Chloride Transport across the Sarcolemma of Vertebrate Smooth and Skeletal Muscle

  • C. Claire Aickin


Our knowledge of the handling of Cl by muscle cells has increased immensely since the classic work of Boyle and Conway (1941) which revolutionized concepts about the permeability of the sarcolemma to Cl. In a complete turnaround from being considered impermeant, Cl ions were deemed to have free passage across the membrane. The majority view was that Cl permeability was so high that the transmembrane distribution was assumed to be determined entirely by the membrane potential, i.e., Cl was distributed at electrochemical equilibrium. All of interest that could possibly happen would be a reduction in the dominating Cl conductance causing a large decrease in the resting membrane conductance which would therefore seriously affect the electrical stability of the cell—the generation of myotonic activity (Lipicky and Bryant, 1966; Adrian and Marshall, 1976). As with all successful revolutions, the new regime dominated ideas, even in other cell types, for several years.


Mammalian Skeletal Muscle Frog Skeletal Muscle Taenia Coli Acid Extrusion Passive Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, R. F., and Roos, A., 1983, The intracellular pH of frog skeletal muscle: Its regulation in hypertonic solutions, J. Physiol. (London) 345: 189–204.PubMedGoogle Scholar
  2. Abercrombie, R. F., Putnam, R. W., and Roos, A., 1983, The intracellular pH of frog skeletal muscle: Its regulation in isotonic solutions, J. Physiol. (London) 345: 175–187.Google Scholar
  3. Adrian, R. H., 1961, Internal chloride concentration and chloride efflux of frog muscle, J. Physiol. (London) 156: 623–632.Google Scholar
  4. Adrian, R. H., and Marshall, M. W., 1976, Action potentials reconstructed in normal and myotonic muscle fibres, J. Physiol. (London) 258: 125–143.Google Scholar
  5. Aickin, C. C., 1977, Intracellular pH of mammalian skeletal muscle, Ph.D. thesis, Bristol University. Aickin, C. C., 1981, A double-barrelled micro-electrode suitable for measurement of intracellular chloride activity (ah) in guinea-pig vas deferens, J. Physiol. (London) 320: 4P - 5 P.Google Scholar
  6. Aickin, C. C., 1984, Direct measurement of intracellular pH and buffering power in smooth muscle cells of guinea-pig vas deferens, J. Physiol. (London) 349: 571–585.Google Scholar
  7. Aickin, C. C., 1985, The effect of Na+ and HCO3 ions on recovery from an acid load in the smooth muscle of guinea-pig ureter, J. Physiol. (London) 369: 80 P.Google Scholar
  8. Aickin, C. C., 1986, Intracellular pH regulation by vertebrate muscle, Annu. Rev. Physiol. 48: 349–361.PubMedCrossRefGoogle Scholar
  9. Aickin, C. C., 1987a, Investigation of factors affecting the intracellular sodium activity in the smooth muscle of guinea-pig ureter, J. Physiol. (London) 385: 483–505.Google Scholar
  10. Aickin, C. C., 1987b, Na,K,CI co-transport is involved in Cl accumulation in the smooth muscle of isolated guinea-pig vas deferens, J. Physiol. (London) 394: 87 P.Google Scholar
  11. Aickin, C. C., 1988, Movements of acid equivalents across the mammalian smooth muscle membrane, C/BA Found. Svmp. 139: 3–22.Google Scholar
  12. Aickin, C. C., and Brading, A. F., 1982a, Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36chloride efflux and micro-electrodes, J. Physiol. (London) 326: 139–154.Google Scholar
  13. Aickin, C. C., and Brading, A. F., 1982b, The effect of CO2/HCO3 and DIDS on Cl movements in guinea-pig vas deferens, J. Physiol. (London) 327: 74P - 75 P.Google Scholar
  14. Aickin, C. C., and Brading, A. F., 1983, Towards an estimate of chloride permeability in the smooth muscle of guinea-pig vas deferens, J. Physiol. (London) 336: 179–197.Google Scholar
  15. Aickin, C. C., and Brading, A. F., 1984, The role of chloride—bicarbonate exchange in the regulation of intracellular chloride in guinea-pig vas deferens, J. Physiol. (London) 349: 587–606.Google Scholar
  16. Aickin, C. C., and Brading, A. F., 1985a, Advances in the understanding of transmembrane ionic gradients and permeabilities in smooth muscle obtained by using ion-selective micro-electrodes, Experientia 41: 879–887.PubMedCrossRefGoogle Scholar
  17. Aickin, C. C., and Brading, A. F., 1985b, The effects of bicarbonate and foreign anions on chloride transport in smooth muscle of the guinea-pig vas deferens, J. Physiol. (London) 366: 267–280.Google Scholar
  18. Aickin, C. C., and Thomas, R. C., 1977a, Micro-electrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres, J. Physiol. (London) 267: 791–810.Google Scholar
  19. Aickin, C. C., and Thomas, R. C., 1977b, An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres, J. Physiol. (London) 273: 295–316.Google Scholar
  20. Aickin, C. C., and Vermuë, N. A., 1983, Microelectrode measurement of intracellular chloride activity in smooth muscle cells of guinea-pig ureter, Pfluegers Arch. 397: 25–28.CrossRefGoogle Scholar
  21. Aickin, C. C., Brading, A. F., and Burdyga, Th. V., 1984, Evidence for sodium—calcium exchange in the guinea-pig ureter, J. Physiol. (London) 347: 411–430.Google Scholar
  22. Aickin, C. C., Betz, W. J., and Harris, G. L., 1988a, Inhibition of resting Cl conductance (Gc1) reveals active accumulation of Cl by Na,K,CI co-transport in isolated rat skeletal muscle, Pfluegers Arch. 411 (Suppl. 1): R188.Google Scholar
  23. Aickin, C. C., Betz, W. J., and Harris, G. L., 1988b, Intracellular chloride and the mechanism for its accumulation in rat lumbrical muscle, J. Physiol. (London) 411: 437–455.Google Scholar
  24. Ammann, D., Lanter, F., Steiner, R. A., Schulthess, P., Shijo, Y., and Simon, W., 1981, Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies, Anal. Chem. 53: 2267 2269.Google Scholar
  25. Armstrong, W. M., Wojtkowski, W., and Bixenman, W. R., 1977, A new solid-state microelectrode for measuring intracellular chloride activities, Biochim. Biophys. Acta 465: 165–170.PubMedCrossRefGoogle Scholar
  26. Aronson, P. S., 1985, Kinetic properties of the plasma membrane Na+-H+ exchanger, Annu. Rev. Physiol. 47: 545–560.PubMedCrossRefGoogle Scholar
  27. Ashley, C. C., Ellory, J. C., Lea, T. J., and Ramos, M., 1978, The effect of inhibitors on 36C1 efflux from barnacle muscle fibres, J. Physiol. (London) 285: 52P - 53 P.Google Scholar
  28. Axelsson, J., and Holmberg, B., 1971, The effects of K-free solution on tension development in the smooth muscle taenia coli from the guinea-pig, Acta Physiol. Scand. 82: 322–332.PubMedCrossRefGoogle Scholar
  29. Baumgarten, C. M., and Fozzard, H. A., 1981, Intracellular chloride activity in mammalian ventricular muscle, Am. J. Physiol. 241: C121 — C129.PubMedGoogle Scholar
  30. Betz, W. J., Caldwell, G. H., and Kinnamon, S. C., 1984, Physiological basis of a steady electric current in rat skeletal muscle, J. Gen. Physiol. 83: 175–192.PubMedCrossRefGoogle Scholar
  31. Betz, W. J., Caldwell, G. H., and Harris, G. L., 1986, Effect of denervation on a steady electric current generated at the end plate region of rat skeletal muscle, J. Gen. Physiol. 373: 97–114.Google Scholar
  32. Birnberger, K. L., and Kelpzig, M., 1979, Influence of extracellular potassium and intracellular pH on myotonia, J. Neurol. 222: 23–35.PubMedCrossRefGoogle Scholar
  33. Blum, R., and Westphal, W., 1981, On the actions of a chloride conductance blocking agent (anthracene-9-COOH) on the resting potential of a single mammalian skeletal muscle fibre, Pfluegers Arch. 389: R45.Google Scholar
  34. Bolton, T. B., 1973, Effects of electrogenic sodium pumping on the membrane potential of longitudinal smooth muscle from the terminal ileum of guinea-pig, J. Physiol. (London) 228: 693–712.Google Scholar
  35. Bolton, T. B., and Vaughan-Jones, R. D., 1977, Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle, J. Physiol. (London) 270: 801–833.Google Scholar
  36. Boron, W. F., and Boulpaep, E. L., 1983, Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3 transport, J. Gen. Physiol. 81: 53–94.PubMedCrossRefGoogle Scholar
  37. Boron, W. F., and Russell, J. M., 1983, Stoichiometry and ion dependencies of the intracellular-pHregulating mechanism in squid giant axons, J. Gen. Physiol. 81: 373–399.PubMedCrossRefGoogle Scholar
  38. Boron, W. F., McCormick, W. C., and Roos, A., 1981, pH regulation in barnacle muscle fibers: Dependence on extracellular sodium and bicarbonate, Am. J. Physiol. 240: C80 — C89.Google Scholar
  39. Boron, W. F., Siebens, A. W., and Nakhoul, N. L., 1988, The role of monocarboxylate transport in the regulation of intracellular pH of renal proximal tubule cells, CIBA Found. Symp. 139: 91–105.PubMedGoogle Scholar
  40. Boyle, P. J., and Conway, E. J., 1941, Potassium accumulation in muscle and associated changes, J. Physiol. (London) 100: 1–63.Google Scholar
  41. Brading, A. F., 1973, Ion distribution and ion movements in smooth muscle, Philos. Trans. R. Soc. London Ser. B 265: 35–46.CrossRefGoogle Scholar
  42. Brading, A. F., 1987, The effect of Na ions and loop diuretics on transmembrane 36C1 fluxes in isolated guinea-pig smooth muscles, J. Physiol. (London) 394: 86 P.Google Scholar
  43. Brading, A. F., and Tomita, T., 1968, Effects of anions on the volume of a smooth muscle, Nature 218: 276277.Google Scholar
  44. Brading, A. F., and Widdicombe, J. H., 1977, The use of lanthanum to estimate the numbers of extracellular cation-exchanging sites in the guinea-pig’s taenia coli, and its effect on transmembrane monovalent ion movements, J. Physiol. (London) 266: 255–273.Google Scholar
  45. Brazy, P. C., and Gunn, R. B., 1976, Furosemide inhibition of chloride transport in human red blood cells, J. Gen. Physiol. 68: 583–599.PubMedCrossRefGoogle Scholar
  46. Bretag, A. H., 1987, Muscle chloride channels, Physiol. Rev. 67: 618–724.PubMedGoogle Scholar
  47. Bretag, A. H., Dawe, S. R., Kerr, D. I. B., and Moskwa, A. G., 1980, Myotonia as a side effect of diuretic action, Br. J. Pharmacol. 71: 467–471.PubMedCrossRefGoogle Scholar
  48. Bryant, S. H., and Morales-Aguilera, A., 1971, Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids, J. Physiol. (London) 219: 367–383.Google Scholar
  49. Byrne, N. G., and Large, W. A., 1987, Action of noradrenaline on single smooth muscle cells freshly dispersed from the rat anococcygeus muscle, J. Physiol. (London) 389: 513–525.Google Scholar
  50. Caldwell, J. H., and Betz, W. J., 1984, Properties of an endogenous steady current in rat muscle, J. Gen. Physiol. 83: 157–173.PubMedCrossRefGoogle Scholar
  51. Camerino, D., and Bryant, S. H., 1976, Effects of denervation and colchicine treatment on the chloride conductance of rat skeletal muscle fibers, J. Neurobiol. 7: 221–228.PubMedCrossRefGoogle Scholar
  52. Carmeliet, E. E., 1961, Chloride ions and the membrane potential of Purkinje fibres, J. Physiol. (London) 156: 375–388.Google Scholar
  53. Casteels, R., 1966, The action of ouabain on the smooth muscle cells of the guinea-pig’s taenia coli, J. Physiol. (London) 186: 131–142.Google Scholar
  54. Casteels, R., 1969a, Calculation of the membrane potential in smooth muscle cells of the guinea-pig’s taenia coli by the Goldman equation, J. Physiol. (London) 205: 193–208.Google Scholar
  55. Casteels, R., 1969b, Ion content and ion fluxes in the smooth muscle cells of the longitudinal layer of the guinea-pig’s vas deferens, Pfluegers Arch. 313: 95–105.CrossRefGoogle Scholar
  56. Casteels, R., 1971, The distribution of chloride ions in the smooth muscle cells of the guinea-pig’s taenia coli, J. Physiol. (London) 214: 225–243.Google Scholar
  57. Casteels, R., 1981, Membrane potential in smooth cells, in: Smooth Muscle: An Assessment of Current Knowledge (E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita, Eds.), Amold, London, pp. 105126.Google Scholar
  58. Casteels, R., and Kuriyama, H., 1966, Membrane potential and ion content in the smooth muscle of the guinea-pig’s taenia coli at different external potassium concentrations, J. Physiol. (London) 184: 1201–30.Google Scholar
  59. Chao, A. C., and Armstrong, W. M., 1987, Cl — -selective microelectrodes: Sensitivity to anionic CI—transport inhibitors, Am. J. Physiol. 253: C343 — C347.PubMedGoogle Scholar
  60. Chipperfield, A. R., 1981, Chloride dependence of frusemide-and phloretin-sensitive passive sodium and potassium fluxes in human red cells, J. Physiol. (London) 312: 435–444.Google Scholar
  61. Chipperfield, A. R., 1986, The (Na +-K+-CI—) co-transport system, Clin. Sci. 71: 465–476.PubMedGoogle Scholar
  62. Coleman, H. A., and Parkington, H. C., 1987, Single channel CI — and K + currents from cells of uterus not treated with enzymes, Pfluegers Arch. 410: 560–562.CrossRefGoogle Scholar
  63. Coronado, R., and Latorre, R., 1982, Detection of K+ and CI— channels from calf cardiac sarcolemma in planar lipid bilayer membranes, Nature 298: 849–852.PubMedCrossRefGoogle Scholar
  64. DeCoursey, T. E., Younkin, S. G., and Bryant, S. H., 1978, Neural control of chloride conductance in rat extensor digitorum Longus muscle, Exp. Neurol. 61: 705–709.PubMedCrossRefGoogle Scholar
  65. Deisz, R. A., and Lux, H. D., 1982, The role of intracellular chloride in hyperpolarizing post-synaptic inhibition of crayfish stretch receptor neurones, J. Physiol. (London) 326: 123–138.Google Scholar
  66. Deitmer, J. W., and Schlue, W.-R., 1987, The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech, J. Physiol. (London) 388: 261–283.Google Scholar
  67. DiFrancesco, D., and Noble, D., 1985, A model of cardiac electrical activity incorporating ionic pumps and concentration changes, Philos. Trans. R. Soc. London Ser. B 307: 353–398.CrossRefGoogle Scholar
  68. Donaldson, P. J., and Leader, J. P., 1984, Intracellular ionic activities in the EDL of the mouse, Pfluegers Arch. 400: 166–170.CrossRefGoogle Scholar
  69. Dulhuntry, A. F., 1978, The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle, J. Physiol. (London) 276: 67–82.Google Scholar
  70. Ellis, D., and MacLeod, K. T., 1985, Sodium-dependent control of intracellular pH in Purkinje fibres of sheep heart, J. Physiol. (London) 359: 81–105.Google Scholar
  71. Ellis, D., and Thomas, R. C., 1976, Direct measurement of the intracellular pH of mammalian cardiac muscle, J. Physiol. (London) 262: 755–771.Google Scholar
  72. Ellory, J. C., and Stewart, G. W., 1982, The human Cl-dependent Na-K cotransport system as a possible model for studying the action of loop diuretics, Br. J. Pharmacol. 75: 183–188.PubMedCrossRefGoogle Scholar
  73. Ellory, J. C., Dunham, P. B., Logue, P. J., and Stewart, G. W., 1982, Anion-dependent cation transport in erythrocytes, Philos. Trans. R. Soc. London Ser. B 299: 483–495.CrossRefGoogle Scholar
  74. Elsner, P., and Westphal, W., 1979, External chloride concentration and membrane resting potential of mammalian skeletal muscle fibres, Pfluegers Arch. 382: R24.Google Scholar
  75. Fenn, W. 0., 1936, Electrolytes in muscle, Physiol. Rev. 16: 450–487.Google Scholar
  76. Galler, S., and Moser, H., 1986, The ionic mechanism of intracellular pH regulation in crayfish muscle fibres, J. Physiol. (London) 374: 137–151.Google Scholar
  77. Garay, R. P., Dagher, G., Pernollet, M.-G., Devynck, M.-A., and Meyer, P., 1980, Inherited defect in a Na +,K + -cotransport system in erythrocytes from essential hypertensive patients, Nature 284: 28 1283.Google Scholar
  78. Geck, P., Pietrzyk, C., Burckhardt, B. C., Pfeiffer, B., and Heinz, E., 1980, Electrically silent cotransport of Na, K and CI in Ehrlich cells, Biochim. Biophys. Acta 600: 432–447.PubMedCrossRefGoogle Scholar
  79. Gerstheimer, F. P., Mühleisen, M., Nehring, D., and Kreye, V. A. W., 1987, A chloride—bicarbonate exchanging anion carrier in vascular smooth muscle of the rabbit, Pfluegers Arch. 409: 60–66.CrossRefGoogle Scholar
  80. Goldman, D. E., 1943, Potential, impedance and rectification in membranes, J. Gen. Physiol. 27: 37–60.PubMedCrossRefGoogle Scholar
  81. Griggs, R. C., Moxley, R. T., Riggs, J. E., and Engel, W. K., 1978, Effects of acetazolamide on myotonia, Ann. Neurol. 3: 531–538.PubMedCrossRefGoogle Scholar
  82. Gunther, R. D., and Wright, E. M., 1983, Na+, Li+ and Cl — transport by brush border membranes from rabbit jejunum, J. Membr. Biol. 74: 85–94.PubMedCrossRefGoogle Scholar
  83. Hagiwara, S., and Takahashi, K., 1974, Mechanism of anion permeation through the muscle fibre mem-brane of an elasmobranch fish, Taeniura lymma, J. Physiol. (London) 238: 109–127.Google Scholar
  84. Hamon, G., Papadimitriou, A., and Worcel, M., 1976, Ionix fluxes in rat uterine smooth muscle, J. Physiol. (London) 254: 229–243.Google Scholar
  85. Hannafin, J., Kinne-Saffran, E., Frieman, D., and Kinne, R., 1983, Presence of a sodium—potassium chloride cotransport system in the rectal gland of Squalus acanthias, J. Membr. Biol. 75: 73–83.PubMedCrossRefGoogle Scholar
  86. Harris, E. J., 1963, Distribution and movement of muscle chloride, J. Physiol. (London) 166: 87–109.Google Scholar
  87. Harris, G. L., and Betz, W. J., 1987, Evidence for active chloride accumulation in normal and denervated rat lumbrical muscle, J. Gen. Physiol. 90: 127–144.PubMedCrossRefGoogle Scholar
  88. Hironaka, T., and Morimoto, S., 1980, Intracellular chloride concentration and evidence for the existence of a chloride pump in frog skeletal muscle, Jpn. J. Physiol. 30: 357–363.PubMedCrossRefGoogle Scholar
  89. Hirst, G. D. S., and van Helden, D., 1982, Ionic basis of the resting potential of submucosal arterioles in the ileum of the guinea-pig, J. Physiol. (London) 333: 53–67.Google Scholar
  90. Hodgkin, A. L., and Katz, B., 1949, The effect of sodium on the electrical activity of the giant axon of the squid, J. Physiol. (London) 108: 37–77.Google Scholar
  91. Hodgkin, A. L., and Horowicz, P., 1959, The influence of potassium and chloride ions on the membrane potential of single muscle fibres, J. Physiol. (London) 148: 127–160.Google Scholar
  92. Holman, M. E., 1958, Membrane potentials recorded with high-resistance microelectrodes and the effects of changes in ionic environment on the electrical and mechanical activity of the smooth muscle of the. taenia coli of guinea-pig, J. Physiol. (London) 141: 464–488.Google Scholar
  93. Hunter, M. J., 1977, Human erythrocyte anion permeabilities measured under conditions of net charge transfer, J. Physiol. (London) 268: 35–49.Google Scholar
  94. Hutter, O. F., and Warner, A. E., 1967, The pH sensitivity of the chloride conductance of frog skeletal muscle, J. Physiol. (London) 189: 403–425.Google Scholar
  95. Ighoroje, A. D., and Spurway, N. C., 1985, How does vascular smooth muscle in the isolated rabbit ear artery adapt its tone after alkaline or acid loads? J. Physiol. (London) 367: 46 P.Google Scholar
  96. Inoue, I., 1985, Voltage-dependent chloride conductance of the squid axon membrane and its blockade by some disulfonic stilbene derivatives, J. Gen. Physiol. 85: 519–537.PubMedCrossRefGoogle Scholar
  97. Ives, H. E., Yee, V. J., and Warnock, D. G., 1983, Mixed type inhibition of the renal Na+/H+ antiporterby Li and amiloride, J. Biol. Chem. 258: 9710–9716.PubMedGoogle Scholar
  98. Iyer, V. G., Ranish, N. A., and Fenichel, G. M., 1981, Ionic conductance and experimentally induced myotonia, J. Neurol. Sci. 49: 159–164.PubMedCrossRefGoogle Scholar
  99. Jones, A. W., 1974, Altered ion transport in large and small arteries from spontaneously hypertensive rats and the influence of calcium, Circ. Res. 34/35(Suppl. 1 ): 117–121.Google Scholar
  100. Jones, A. W., and Karreman, G., 1969, Ion exchange properties of the canine carotid artery, Biophys. J. 9: 884–909.PubMedCrossRefGoogle Scholar
  101. Jones, A. W., Somlyo, A. P., and Somlyo, A. V., 1973, Potassium accumulation in smooth muscle and associated ultrastructural changes, J. Physiol. (London) 232: 247–273.Google Scholar
  102. Kernan, R. P., 1968, Membrane potential and chemical transmitter in active transport of ions by rat skeletal muscle, J. Gen. Physiol. 51: 2045–210S.Google Scholar
  103. Kernan, R. P., 1986, Chloride-dependent sodium influx into rat skeletal muscle fibres measured with ion-selective micro-electrodes, J. Physiol. (London) 371: 146 P.Google Scholar
  104. Kernan, R. P., and Westphal, W., 1984, The ionic basis of membrane hyperpolarization in rat diaphragm on exposure to chloride deficient physiological saline, Irish J. Med. Sci. 153: 198.CrossRefGoogle Scholar
  105. Kernan, R. P., MacDermott, M., and Westphal, W., 1974, Measurement of chloride activity within frog sartorius muscle fibres by means of chloride-sensitive micro-electrodes, J. Physiol. (London) 241: 60P - 61 P.Google Scholar
  106. Keynes, R. D., 1963, Chloride in the squid giant axon, J. Physiol. (London) 169: 690–705.Google Scholar
  107. Kinsella, J. L., and Aronson, P. S., 1981, Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles, Am. J. Physiol. 241: F374 — F379.PubMedGoogle Scholar
  108. Kirkpatrick, C. T., 1981, Tracheobronchial smooth muscle, in: Smooth Muscle: An Assessment of Current Knowledge (E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita, Eds.), Arnold London, pp. 385395.Google Scholar
  109. Knauf, P. A., and Rothstein, A., 1971, Chemical modification of membranes. 1. Effect of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cells, J. Gen. Physiol. 58: 190–210.PubMedCrossRefGoogle Scholar
  110. Knauf, P. A., Fuhrmann, G. F., Rothstein, S., and Rothstein, A., 1977, The relationship between anion exchange and net anion flow across the human red blood cell membrane, J. Gen. Physiol. 69: 363–386.PubMedCrossRefGoogle Scholar
  111. Korbmacher, C., Helbig, H., Stahl, F., and Wiederholt, M., 1988, Evidence for Na/H exchange and Cl/HCO3 exchange in AIO vascular smooth muscle cells, Pfluegers Arch. 412: 29–36.Google Scholar
  112. Kregenow, F. M., and Caryk, T., 1979, Co-transport of cations and Cl during the volume regulatory responses of duck erythrocytes, Physiologist 22: 73.Google Scholar
  113. Kreye, V. A. W., Bauer, P. K., and Villhauer, I., 1981, Evidence for furosemide-sensitive active chloride transport in vascular smooth muscle, Eur. J. Pharmacol. 73: 91–95.PubMedCrossRefGoogle Scholar
  114. Kuriyama, H., 1963, The influence of potassium, sodium and chloride on the membrane potential of smooth muscle of taenia coli, J. Physiol. (London) 166: 15–28.Google Scholar
  115. Kwiecinski, H., 1980, Treatment of myotonic dystrophy with acetazolamide, J. Neural. 222: 261–263.CrossRefGoogle Scholar
  116. Kwiecinski, H., 1981, Myotonia induced by chemical agents, Crit. Rev. Toxicol. 8: 279–310.CrossRefGoogle Scholar
  117. Kwiecinski, H., Lehmann-Horn, F., and Rüdel, R., 1984, The resting membrane parameters of human intercostal muscle at low, normal and high extracellular potassium, Muscle Nerve 7: 60–65.PubMedCrossRefGoogle Scholar
  118. Large, W. A., 1984, The effect of chloride removal on the responses of the isolated rat anococcygeus muscle to at-adrenoceptor stimulation, J. Physiol. (London) 352: 17–29.Google Scholar
  119. Leader, J. P., Bray, J. J., MacKnight, A. D. C., Mason, D. R., McCaig, D., and Mills, R. G., 1984, Cellular ions in intact and denervated muscles of the rat, J. Membr. Biol. 81: 19–27.PubMedCrossRefGoogle Scholar
  120. Lee, C. O., and Fozzard, H. A., 1975, Activities of potassium and sodium ions in rabbit heart muscle, J. Gen. Physiol. 65: 695–708.PubMedCrossRefGoogle Scholar
  121. Lev, A. A., 1964, Determination of activity and activity coefficients of K and Na ions in frog muscle fibres, Nature 201: 1132–1134.PubMedCrossRefGoogle Scholar
  122. Lipicky, R. J., and Bryant, S. H., 1966, Sodium, potassium and chloride fluxes in intercostal muscle from normal goats and goats with hereditary myotonia, J. Gen. Physiol. 50: 90–111.Google Scholar
  123. Little, P. J., Cragoe, E. J., and Bobik, A., 1986, Na—H exchange is a major pathway for Na influx in rat vascular smooth muscle, Am. J. Physiol. 251: C707 - C712.PubMedGoogle Scholar
  124. Liu, S., Jacob, R., Piwnica-Worms, S. D., and Lieberman, M., 1987, (Na + K + 2C1) cotransport in cultured embryonic chick heart cells, Am. J. Physiol. 253: C721 - C730.Google Scholar
  125. Lorkovic, H., and Tomanek, R. J., 1977, Potassium and chloride conductances in normal and denervated rat muscles, Am. J. Physiol. 232: C109 - C114.PubMedGoogle Scholar
  126. McCaig, D., and Leader, J. P., 1984, Intracellular chloride activity in the extensor digitorum longus (EDL) of the rat, J. Membr. Biol. 81: 9–17.PubMedCrossRefGoogle Scholar
  127. Macchia, D., 1982, Chloride self-exchange in toad skeletal muscle in vivo and in vitro, Am. J. Physiol. 242: C207 — C217.PubMedGoogle Scholar
  128. Macchia, D., and Baumgarten, C. M., 1979, Is chloride passively distributed in skeletal muscle in vivo? Pfluegers Arch. 382: 193–195.Google Scholar
  129. Marshall, J. M., 1977, Modulation of smooth muscle activity by catecholamines, Fed. Proc. 36: 2450–2455.PubMedGoogle Scholar
  130. Millar, J. S., and Vaughan-Williams, E. M., 1981, Pacemaker selectivity: Influence on rabbit atria of ionic environment and of alinidine, a possible anion antagonist, Cardiovasc. Res. 15: 335–350.PubMedCrossRefGoogle Scholar
  131. Montrose, M., Randles, J., and Kimmich, G. A., 1987, SITS-sensitive Cl— conductance pathway in chick intestinal cells, Am. J. Physiol. 253: C693 — C699.PubMedGoogle Scholar
  132. Moody, W. J., 1981, The ionic mechanism of intracellular pH regulation in crayfish neurones, J. Physiol. (London) 316: 293–308.Google Scholar
  133. Moser, H., 1985, Intracellular pH regulation in the sensory neurone of the stretch receptor of the crayfish (Astacus fluviatilis), J. Physiol. (London) 362: 23–38.Google Scholar
  134. Neild, T. O., and Thomas, R. C., 1974, Intracellular chloride activity and the effects of acetylcholine in snail neurones, J. Physiol. (London) 242: 453–470.Google Scholar
  135. Nelson, D. J., Tang, J. M., and Palmer, L. G., 1984, Single channel recordings of apical membrane chloride conductance in A6 epithelial cells, J. Membr. Biol. 80: 81–89.PubMedCrossRefGoogle Scholar
  136. Noble, D., 1984, The surprising heart: A review of recent progress in cardiac electrophysiology, J. Physiol. (London) 353: 1–50.Google Scholar
  137. O’Grady, S. M., Palfrey, H. C., and Field, M., 1987, Characteristics and functions of Na-K-Cl cotransport in epithelial tissues, Am. J. Physiol. 253: C177 — C192.PubMedGoogle Scholar
  138. Ohashi, H., 1970a, An estimate of the proportion of the resting membrane conductance of the smooth muscle of the guinea-pig taenia coli attributable to chloride, J. Physiol. (London) 210: 405–419.Google Scholar
  139. Ohashi, H., I970b, Effects of changes in ionic environment on the negative after-potential of the spike in rat uterine muscle, J. Physiol. (London) 210: 785–797.Google Scholar
  140. Ohashi, H., 1971, The relative contribution of K and Cl to the total increase of membrane conductance produced by adrenaline on the smooth muscle of guinea-pig taenia coli, J. Physiol. (London) 212: 56 1575.Google Scholar
  141. Owen, N. E., 1985, Regulation of Na/K/Cl cotransport in vascular smooth muscle cells, Biochem. Biophys. Res. Commun. 125: 500–508.CrossRefGoogle Scholar
  142. Palade, P. T., and Barchi, R. L., 1977a, Characteristics of chloride conductance in muscle fibres of the rat diaphragm, J. Gen. Physiol. 69: 325–342.PubMedCrossRefGoogle Scholar
  143. Palade, P. T., and Barchi, R. L., I977b, On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids, J. Gen. Physiol. 69: 879–896.Google Scholar
  144. Palfrey, H. C., Feit, P. W., and Greenwald, P., 1980, cAMP-stimulated cation transport in avian erythrocytes: Inhibition by “loop” diuretics, Am. J. Physiol. 238: C139 — C148.Google Scholar
  145. Piwnica-Worms, D., Jacob, R., Horres, C. R., and Lieberman, M., 1985, Na/H exchange in cultured chick heart cells. pH, regulation, J. Gen. Physiol. 85: 43–64.PubMedCrossRefGoogle Scholar
  146. Prosser, C. L., 1974, Smooth muscle, Annu. Rev. Physiol. 36: 503–535.PubMedCrossRefGoogle Scholar
  147. Putnam, R. W., and Roos, A., 1985, Aspects of pH, regulation in frog skeletal muscle, in: Current Topics in Membranes and Transport: Na+—H+ Exchange, Intracellular pH and Cell Function ( P. S. Aronson and W. F. Boron, eds.), Academic Press, New York, pp. 35–36.Google Scholar
  148. Renner, H., and Westphal, W., 1975, Potassium and chloride: A reassessment in mammalian skeletal muscle, Pfluegers Arch. 359: R68.Google Scholar
  149. Reuss, L., Lewis, S. A., Wills, N. K., Heiman, S. 1., Cox, T. C., Boron, W. F., Siebens, A. W., Guggino, W. B., Giebisch, G., and Schultz, S. G., 1984, Ion transport processes in basolateral membranes of epithelia, Fed. Proc. 43: 2488–2502.Google Scholar
  150. Roos, A., and Boron, W. F., 1978, Intracellular pH transients in rat diaphragm muscle measured with DMO, Am. J. Physiol. 235: C49–054.PubMedGoogle Scholar
  151. Rüdel, R., and Senges, J., 1972, Mammalian skeletal muscle: Reduced chloride conductance in drug-induced myotonia and induction of myotonia by low-chloride solution, Naunyn-Schmiedebergs Arch. Pharmacol. 274:337–347.Google Scholar
  152. Russell, J. M., 1979, Chloride and sodium influx: A coupled mechanism in the squid axon, J. Gen. Physiol. 73: 801–818.PubMedCrossRefGoogle Scholar
  153. Russell, J. M., 1983, Cation-coupled influx in squid axon. Role of potassium and stoichiometry of the transport process, J. Gen. Physiol. 81: 909–925.PubMedCrossRefGoogle Scholar
  154. Russell, J. M., and Brodwick, M. S., 1976, Chloride fluxes in the dialyzed barnacle muscle fiber and the effect of SITS, Biophys. J. 16:156a.Google Scholar
  155. Russell, J. M., and Brodwick, M. S., 1979, Properties of chloride transport in barnacle muscle fibers, J. Gen. Physiol. 73: 343–368.PubMedCrossRefGoogle Scholar
  156. Schlue, W.-R., and Thomas, R. C., 1985, A dual mechanism for intracellular pH regulation by leech neurones, J. Physiol. (London) 364: 327–338.Google Scholar
  157. Shearin, N. L., and Walker, J. L., 1983, Direct intracellular measurement of chloride ionic activity and the relationship to membrane potential in colonic smooth muscle, Fed. Proc. 43: 10042.Google Scholar
  158. Shoemaker, R., Naftel, J., and Farley, J., 1985, Measurement of K+ and Cl— channels in rat cultured vascular smooth muscle cells, Biophys. J. 47: 465a.Google Scholar
  159. Simchowitz, L., and Roos, A., 1985, Regulation of intracellular pH in human neutrophils, J. Gen. Physiol. 85: 443–470.PubMedCrossRefGoogle Scholar
  160. Somlyo, A. P., Somlyo, A. V., and Schuman, H., 1979, Electron probe analysis of vascular smooth muscle. Composition of mitochondria, nuclei and cytoplasm, J. Cell Biol. 81: 316–335.PubMedCrossRefGoogle Scholar
  161. Spray, D. C., Harris, A. L., and Bennett, M. V. L., 1981, Gap junctional conductance is a simple and sensitive function of intracellular pH, Science 211: 712–715.PubMedCrossRefGoogle Scholar
  162. Steiner, R. A., Oehme, M., Ammann, D., and Simon, W., 1979, Neutral carrier sodium ion-selective microelectrode for intracellular studies, Anal. Chem. 51: 351–353.CrossRefGoogle Scholar
  163. Strickholm, A., and Wallin, B. G., 1967, Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes, J. Gen. Physiol. 50: 1929–1953.PubMedCrossRefGoogle Scholar
  164. Thomas, R. C., 1974, Intracellular pH of snail neurones measured with a new pH-sensitive glass micro-electrode, J. Physiol. (London) 238: 159–180.Google Scholar
  165. Thomas, R. C., 1976, Ionic mechanism of the H+ pump in a snail neurone, Nature 262: 54–55.PubMedCrossRefGoogle Scholar
  166. Thomas, R. C., 1977, The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones, J. Physiol. (London) 273: 317–338.Google Scholar
  167. Thomas, R. C., 1984, Experimental displacement of intracellular pH and the mechanism of its subsequent recovery, J. Physiol. (London) 354: 3P - 22 P.Google Scholar
  168. Thomas, R. C., and Cohen, C. J., 1981, A liquid ion-exchanger alternative to KC1 for filling intracellular reference microelectrodes, Pfluegers Arch. 390: 96–98.CrossRefGoogle Scholar
  169. Tomita, T., 1981, Electrical activity (spikes and slow waves) in gastrointestinal smooth muscles, in: Smooth Muscle: An Assessment of Current Knowledge ( E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita, eds.), Arnold, London, pp. 127–156.Google Scholar
  170. Turin, L., and Warner, A. E., 1978, Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo, Nature 270: 56–57.CrossRefGoogle Scholar
  171. Vanheel, B., De Hemptinne, A., and Leusen, I., 1984, Analysis of CI-HCO3 exchange during recovery from intracellular acidosis in cardiac Purkinje strands, Am. J. Physiol. 246: C391 — C400.PubMedGoogle Scholar
  172. Vassort, G., 1981, Ionic currents in longitudinal muscle of the uterus, in: Smooth Muscle: An Assessment of Current Knowledge ( E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita, eds.), Arnold, London, pp. 353–366.Google Scholar
  173. Vaughan, P., and Fong, C. N., 1978, Effects of SITS on chloride permeability in Xenopu,s muscle, Can. J. Physiol. Pharmacol. 56: 1051–1054.PubMedCrossRefGoogle Scholar
  174. Vaughan-Jones, R. D., 1979a, Non-passive chloride distribution in mammalian heart muscle: Micro-elec-trode measurement of the intracellular chloride activity, J. Physiol. (London) 295: 83–109.Google Scholar
  175. Vaughan-Jones, R. D., 1979b, Regulation of chloride in quiescent sheep-heart Purkinje fibres studied using intracellular chloride and pH-sensitive micro-electrodes, J. Physiol. (London) 295: 111–137.Google Scholar
  176. Vaughan-Jones, R. D., 1982, Chloride activity and its control in skeletal and cardiac muscle, Philos. Trans. R. Soc. London Ser B 299: 537–548.CrossRefGoogle Scholar
  177. Vaughan-Jones, R. D., 1986, An investigation of chloride—bicarbonate exchange in the sheep cardiac Purkinje fibre, J. Physiol. (London) 379: 377–406.Google Scholar
  178. Vigne, P., Frelin, C., and Lazdunski, M., 1982, The amiloride-sensitive Na+/H+ exchange system in skeletal muscle cells in culture, J. Biol. Chem. 257: 9394–9400.PubMedGoogle Scholar
  179. Vigne, P., Frelin, C., and Lazdunski, M., 1984, The Na + -dependent regulation of the internal pH in chick skeletal muscle cells. The role of the Na+/H+ exchange system and its dependence on internal pH, EMBO J. 3: 1865–1870.PubMedGoogle Scholar
  180. Villamil, M. F., Ponce, J., Amorena, C., and Müller, A., 1979, Effect of furosemide on the ionic composition of the arterial wall, TIT J. Life Sci. 9: 9–14.PubMedGoogle Scholar
  181. Vysko6l, F., 1977, Diazepam blockade of repetitive action potentials in skeletal muscle fibers. A model of its membrane action, Brain Res. 133: 315–328.CrossRefGoogle Scholar
  182. Wahlström, B. A., 1973a, Ionic fluxes in the rat portal vein and the applicability of the Goldman equation in predicting the membrane potential from flux data. Acta Physiol. Scand. 89: 436–448.PubMedCrossRefGoogle Scholar
  183. Wahlström, B. A., 1973b, A study on the action of nonadrenaline on ionic content and sodium, potassium and chloride effluxes in rat portal vein, Acta Physiol. Scand. 89: 522–530.PubMedCrossRefGoogle Scholar
  184. Warnock, D. G., Greger, R., Dunham, P. B., Benjamin, M. A., Frizzell, R. A., Field, M., Spring, K. R., Ives, H. E., Aronson, P. S., and Sieffer, J., 1984, Ionic transport processes in apical membranes of epithelia, Fed. Proc. 43: 2478–2487.Google Scholar
  185. Weissberg, P. L., Little, P. J., Cragoe, E. L., and Bobik, A., 1987, Na—H antiport in cultured rat aortic smooth muscle: Its role in cytoplasmic pH regulation, Am. J. Physiol. 253: C193 — C198.PubMedGoogle Scholar
  186. Westphal, W., and Limbourg, P., 1972, Chloride movements in resting and stimulated mammalian skeletal muscle, Pfluegers Arch. 332: R72.Google Scholar
  187. White, M. M., and Miller, C., 1979, A voltage-gated anion channel from the electric organ of Torpedo californica, J. Biol. Chem. 254: 10161–10166.PubMedGoogle Scholar
  188. Widdicombe, J. H., and Brading, A. F., 1980, A possible role of linked Na and Cl movement in active CI uptake in smooth muscle, Pfluegers Arch. 386: 35–37.CrossRefGoogle Scholar
  189. Xie, X., Stone, D. K., and Racker, E., 1983, Determinants of clathrin coated vesicle acidification, J. Biol. Chem. 258: 14834–14838.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • C. Claire Aickin
    • 1
  1. 1.The University Department of PharmacologyOxfordUK

Personalised recommendations