Advertisement

Chloride Channels and Carriers in Cultured Glial Cells

  • H. Kettenmann

Abstract

Since their discovery, glial cells have generally been considered to be passive elements with only a few of their properties being recognized as of great importance for the proper functioning of the nervous system, e.g., the formation of myelin by oligodendrocytes and Schwann cells (for reviews see Morell and Norton, 1980), the clearance of K + from the extracellular space by astrocytes (Orkand, 1977, 1980), the guidance of neurons during development (Rakic, 1981), and the uptake of neurotransmitters (Hertz, 1979). Neurons and glial cells are separated by the extracellular space and communication between these two cell populations requires that signals travel across the space. Release of K + into the extracellular space during neuronal activity and the response of glial cells, which take up the excess K + to regulate extracellular concentrations, is an example of such a signal between neurons and glial cells (e.g., Salem et al., 1975; Sykova and Orkand, 1980; Walz and Hertz, 1983b). The potassium uptake by glial cells is mediated by passive processes, namely spatial buffering and passive KC1 uptake, and/or by stimulation of the Na +/K + -ATPase (Kettenmann, 1987a). The efficiency of spatial buffering seems to be determined by the density and distribution of K + channels (Newman, 1985a,b, 1986; Orkand, 1977), that of KCl uptake by the relative density of K + and Cl channels (Ballanyi et al., 1986; Kettenmann, 1987b). Thus, expression of Cl channels in glia can play a functional role in K + homeostasis. Recent observations indicate that not only K + undergoes changes in the extracellular space during neuronal activity, but also Na +, Ca24, H +, and Cl(Chesler, 1987; Dietzel et al., 1982; Nicholson, 1980a,b). Thus, glial cells may be involved in controlling the free concentration of other physiologically relevant ions including H + and Cl. This would not be surprising, since most ion transport systems across cell membranes function as co- or countertransporters. A well-known example is the countertransport of Na + and K + by the Na + /K + -ATPase, which is present in glial cells (Orkand, 1977). Other transport systems present in glial cells include Na +/H + and Cl/HCO 3 exchangers, Na +/HCO 3 and K +/CI cotransporters (Hoppe and Kettenmann, 1989a; Kettenmann and Schlue, 1988; Kimelberg et al.,1979). The combined activity of these carriers and the Na +, K +, Cl, and HCO 3 channels which can be expressed by glial cells (Bevan et al., 1986; Gray et al., 1986; Kettenmann, 1987b; Astion et al., 1987; Tang et al., 1979) are likely to strongly influence nervous tissue extracellular ionic microenvironment.

Keywords

Glial Cell Schwann Cell Gaba Receptor Mouse Spinal Cord Gaba Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astion, M. L., Coles, J. A., and Orkand, R. K., 1987, Effects of bicarbonate on glial membrane potential in Necturus optic nerve, Neurosci. Lett. 76: 47–52.PubMedCrossRefGoogle Scholar
  2. Backus, K. H., Kettenmann, H., and Schachner, M., 1988, Effect of benzodiazepines and pentobarbital on the GABA-induced depolarization in cultured astrocytes, Glia 1: 132–140.PubMedCrossRefGoogle Scholar
  3. Ballanyi, K., Grafe, P., and ten Bruggencate, G., 1986, Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices, J. Physiol. (London) 382: 159–174.Google Scholar
  4. Bevan, S., Gray, P. T. A., and Ritchie, J. M., 1984, A high conductance anion-selective channel in rat Schwann cells, J. Physiol. (London) 348: 18 P.Google Scholar
  5. Bevan, S., Chiu, S. Y., Gray, P. T. A., and Ritchie, J. M., 1985, The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes, Proc. R. Soc. London Ser. B 225: 299–313.CrossRefGoogle Scholar
  6. Bevan, S., Chiu, S. Y., Gray, P. T. A., and Ritchie, J. M., 1986, Voltage-gated ion channels in rat cultured astrocytes, in: Ion Channels in Neural Membranes, ( R. J. Ritchie and R. D. Keynes, eds.), Liss, New York, pp. 159–174.Google Scholar
  7. Blatz, A. L., and Magleby, K. L., 1983, Single voltage-dependent chloride-sensitive channels of large conductance in cultured rat muscle, Biophys. J. 43: 237–241.PubMedCrossRefGoogle Scholar
  8. Bormann, J., and Kettenmann, H., 1988, Patch clamp study of GABA receptor CI— channels in rat cultured astrocytes, Proc. Nad. Acad. Sci. USA 85: 9336–9340.CrossRefGoogle Scholar
  9. Bourke, R. S., Daze, M. A., and Kimelberg, H. K., 1977, Chloride transport in mammalian astroglia, in: Dynamic Properties of Glial Cells ( E. Schoffeniels, G. Franck, L. Hertz, and D. B. Tower, eds.), Pergamon Press, Elmsford, N.Y., pp. 337–346.Google Scholar
  10. Bührle, C. P., and Sonnhof, U., 1983, Intracellular ion activities and equilibrium potential in motoneurones and glial cells of the frog spinal cord, Pfluegers Arch. 396: 144–153.CrossRefGoogle Scholar
  11. Chesler, M., 1987, pH regulation in the vertebrate central nervous system: Microelectrode studies in the brain stem of the lamprey, Can. J. Physiol. Pharmacol. 65: 986–993.Google Scholar
  12. Chiu, S. Y., Shrager, P., and Ritchie, J. M., 1984, Neuronal-type Na+ and K+ channels in rabbit cultured Schwann cells, Nature 311: 156–157.PubMedCrossRefGoogle Scholar
  13. Dietzel, 1., Heinemann, U., Hofmeier, G., and Lux, H. D., 1982, Stimulus induced changes in extracellular Na+- and Cl--concentration in relation to changes in the size of the extracellular space, Exp. Brain Res. 40: 432–439.Google Scholar
  14. Gilbert, P., Kettenmann, H., and Schachner, M., 1984, Gamma-aminobutyric acid directly depolarizes cultured oligodendrocytes, J. Neurosci. 4: 561–569.PubMedGoogle Scholar
  15. Gray, P. T. A., and Ritchie, J. M., 1985, Ion channels in Schwann and glial cells, Trends Neurosci. 8: 41 1415.Google Scholar
  16. Gray, P. T. A., Bevan, S., Chiu, S. Y., Shrager, P., and Ritchie, J. M., 1986, Ionic conductances in mammalian Schwann cells, in: Ion Channels in Neural Membranes, ( R. J. Ritchie and R. D. Keynes, eds.), Liss, New York, pp. 145–157.Google Scholar
  17. Hertz, L., 1979, Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters, Prog. Neurobiol. 13: 277–323.PubMedCrossRefGoogle Scholar
  18. Hoppe, D., and Kettenmann, H., 1989a, Carrier-mediated Cl— transport in cultured oligodendrocytes, J. Neurosci. Res. 22: 274–282.CrossRefGoogle Scholar
  19. Hoppe, D., and Kettenmann, H., 19896, GABA triggers a CI— efflux from cultured oligodendrocytes, Neurosci. Lett. 97: 334–339.Google Scholar
  20. Keilhauer, G., Meier, D. H., Kuhlmann-Krieg, S., Nieke, J., and Schachner, M., 1985, Astrocytes support incomplete differentiation of an oligodendrocyte precursor cell, EMBO J 44: 2499–2504.Google Scholar
  21. Kettenmann, H., 1987a, Oligodendrocytes control extracellular potassium by active uptake and spatial buffering, in: Dynamic Properties of Glia Cells II ( T. Grisar, G. Franck, L. Hertz, W. T. Norton, M. Sensenbrenner, and D. M. Woodbury, eds.), Pergamon Press, Elmsford, N.Y., pp. 155–164.Google Scholar
  22. Kettenmann, H., 19876, K+ and CI— uptake by cultured glial cells, Can. J. Physiol. Pharmacol. 65: 1033–1037.Google Scholar
  23. Kettenmann, H., 1988, Electrophysiological methods applied in nervous system cultures, in: Neuromethods, Volume 10, Neurochemistry VIII ( A. A. Boulton, G. B. Baker, and W. Walz, eds.), Humana Press, Clifton, N.J., pp. 493–544.Google Scholar
  24. Kettenmann, H., and Ranson, R. R., 1988, Electrical coupling between astrocytes and between oligodendrocytes in mammalian cell cultures, Glia 1: 64–73.PubMedCrossRefGoogle Scholar
  25. Kettenmann, H., and Schachner, M., 1985, Pharmacological properties of GABA, glutamate and aspartate induced depolarizations in cultured astrocytes, J. Neurosci. 5: 3295–3301.PubMedGoogle Scholar
  26. Kettenmann, H., and Schlue, W. R., 1988, pH regulation in cultured oligodendrocytes, J. Physiol. (London) 406: 147–162.Google Scholar
  27. Kettenmann, H., Sonnhof, U., and Schachner, M., 1983, Exclusive potassium dependence of the membrane potential in cultured mouse oligodendrocytes, J. Neurosci. 3: 500–505.PubMedGoogle Scholar
  28. Kettenmann, H., Backus, K. H., and Schachner, M., 1984a, Aspartate, glutamate and gamma-aminobutyric acid depolarize cultured astrocytes, Neurosci. Lett. 52: 25–29.PubMedCrossRefGoogle Scholar
  29. Kettenmann, H., Gilbert, P., and Schachner, M., 19846, Depolarization of cultured oligodendrocytes by glutamate and GABA, Neurosci. Lett. 47: 271–276.Google Scholar
  30. Kettenmann, H., Backus, K. H., and Schachner, M., 1987, GABA opens Cl— channels in cultured astrocytes, Brain Res., 404: 1–9.PubMedCrossRefGoogle Scholar
  31. Kettenmann, H., Backus, K. H., and Schachner, M., 1988a, GABA receptors on cultured astrocytes, in: Glial Cell Receptors ( H. K. Kimelberg, ed.), Raven Press, New York, pp. 95–106.Google Scholar
  32. Kettenmann, H., Backus, K. H., and Schachner, M., 1988b, Glial GABA receptors, in: Biochemical Pathology of Astrocytes (M. Norenberg, L. Hertz, and A. Schousboe, Eds.), Liss, New York, pp. 587598.Google Scholar
  33. Kimelberg, H. K., 1981, Active accumulation and exchange transport of chloride in astroglial cells in culture, Biochim. Biophys. Acta 464: 179–184.Google Scholar
  34. Kimelberg, H. K., and Frangakis, M. V., 1985, Furosemide and bumetanide sensitive ion transport and volume control in primary astrocyte cultures from rat brain, Brain Res. 361: 125–134.PubMedCrossRefGoogle Scholar
  35. Kimelberg, H. K., Biddlecome, S., and Bourke, R. S., 1979, SITS-inhibitable Cl— transport and Nat-dependent H+ production in primary astroglial cultures, Brain Res. 173: 111–124.PubMedGoogle Scholar
  36. Kolb, H. A., Brown, C. D. A., and Murer, H., 1985, Identification of a voltage-dependent anion channel in the apical membrane of a CI — secretory epithelium (MDCK), Pfluegers Arch. 403: 262–265.CrossRefGoogle Scholar
  37. Krouse, M. E., Schneider, G. T., and Gage, P. W., 1986, A large anion-selective channel has seven conductance levels, Nature 319: 58–60.CrossRefGoogle Scholar
  38. Kuffler, S. W., Nicholls, J. G., and Orkand, R. K., 1966, Physiological properties of glial cells in the central nervous system of amphibia, J. Neurophysiol. 29: 768–787.PubMedGoogle Scholar
  39. Lindau, M., and Fernandez, J. M., 1986, A patch-clamp study of histamine-secreting cells, J. Gen. Physiol. 88: 349–368.PubMedCrossRefGoogle Scholar
  40. McCarthy, K. D., and de Vellis, J., 1980, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue, J. Cell Biol. 85: 890–902.PubMedCrossRefGoogle Scholar
  41. MacVicar, B. A., Tse, F. W. Y., Crackton, S. E., and Kettenmann, H., 1989, GABA activated CI-channels in astrocytes of hippocampal slices, J. Neurosci. 9: 3577–3583.PubMedGoogle Scholar
  42. Morell, P., and Norton, W. T., 1980, Myelin, Sei. Am. 242: 74–89.Google Scholar
  43. Nelson, D. J., Tang, J. M., and Palmer, L. G., 1984, Single channel recordings of apical membrane chloride conductance in A6 epithelial cells, J. Membr. Biol. 80: 81–89.PubMedCrossRefGoogle Scholar
  44. Newman, E. A., 1985a, Regulation of potassium levels by glial cells in the retina, Trends Neurosci. 8: 156157.Google Scholar
  45. Newman, E. A., 1985b, Membrane physiology of retinal glial (Muller) cells, J. Neurosci. 5: 2225–2239.PubMedGoogle Scholar
  46. Newman, E. A., 1986, High potassium conductance in astrocyte endfeet, Science 233: 453–454.PubMedCrossRefGoogle Scholar
  47. Neyton, J., and Trautmann, A., 1985, Single channel currents of an intracellular junction, Nature 317: 331–335.PubMedCrossRefGoogle Scholar
  48. Nicholson, C., 1980a, Measurement of extracellular ions in the brain, Trends Neurosci. 3: 216–218.CrossRefGoogle Scholar
  49. Nicholson, C., 1980b, Dynamics of the brain cell microenvironment, Neurosci. Res. Progr. Bull. 18: 180322.Google Scholar
  50. Nowak, L., Ascher, P., and Berwald-Netter, Y., 1987, Ionic channels in mouse astrocytes, J. Neurosci. 7: 101–109.PubMedGoogle Scholar
  51. Orkand, R. K., 1977, Glial cells, in: Handbook of Physiology, Section 1, Volume 1 ( E. R. Kandel, ed.), American Physiological Society, Bethesda, pp. 855–873.Google Scholar
  52. Orkand, R. K., 1980, Extracellular potassium accumulation in the nervous system, Fed. Proc. 39: 1515 1518.Google Scholar
  53. Rakic, P., 1981, Neuronal-glial interaction during brain development, Trends Neurosci. 4: 184–187.CrossRefGoogle Scholar
  54. Salem, R. D., Hammerschlag, R., Bracho, H., and Orkand, R. K., 1975, Influence of potassium ions on accumulation and metabolism of (14C) glucose by glial cells, Brain Res. 86: 499–503.CrossRefGoogle Scholar
  55. Schneider, G. T., Cook, D. I., Gage, P. W., and Young, J. A., 1985, Voltage-sensitive, high conductance chloride channels in the luminal membranes of cultured pulmonary alveolar (type 11) cells, Pfluegers Arch. 404: 354–357.CrossRefGoogle Scholar
  56. Schwarze, W., and Kolb, H., 1984, Voltage dependent kinetics of an anionic channel or large unit conductance in macrophages and myotube membranes, Pfluegers Arch. 402: 281–291.CrossRefGoogle Scholar
  57. Seilheimer, B., and Schachner, M., 1987, Regulation of neural cell adhesion molecule expression on cultured mouse Schwann cells by nerve growth factor, EMBO J. 6: 1611–1616.PubMedGoogle Scholar
  58. Shrager, P., Chiu, S. Y., and Ritchie, J. M., 1985, Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells, Proc. Natl. Acad. Sci. USA 82: 948–952.PubMedCrossRefGoogle Scholar
  59. Sonnhof, U., 1987, Single voltage-dependent K+ and Cl-channels in cultured rat astrocytes, Can. J. Physiol. Pharmacol. 65: 1043–1050.PubMedCrossRefGoogle Scholar
  60. Sykova, E., and Orkand, R. K., 1980, Extracellular potassium accumulation and transmission in frog spinal cord, Neurosci. 5: 1421–1428.CrossRefGoogle Scholar
  61. Tang, C. M., Strichartz, G. R., and Orkand, R. K., 1979, Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa, J. Gen. Physiol. 74: 629–642.PubMedCrossRefGoogle Scholar
  62. Villegas, J., Villegas, L., and Villegas, R., 1965, Sodium, potassium, and chloride concentrations in the Schwann cell and axon of the squid nerve fiber, J. Gen. Physiol. 49: 1–7.PubMedCrossRefGoogle Scholar
  63. Walz, W., and Hertz, L., 1983a, Intracellular ion changes of astrocytes in response to extracellular potassium, J. Neurosci. Res. 10: 411–423.PubMedCrossRefGoogle Scholar
  64. Walz, W., and Hertz, L., 1983b, Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level, Prog. Neurobiol. 20: 133–183.PubMedCrossRefGoogle Scholar
  65. Walz, W., and Hinks, E. C., 1985, Carrier-mediated KCl accumulation accompanied by water movements involved in the control of physiological K + levels by astrocytes, Brain Res. 343: 44–51.PubMedCrossRefGoogle Scholar
  66. Zampighi, G. A., and Hall, J. E., 1985, Purified lens junctional protein form channels in planar lipid films, Proc. Natl. Acad. Sci. USA 82: 8468–8472.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. Kettenmann
    • 1
  1. 1.Department of NeurobiologyUniversity of HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations