Advertisement

Chloride Transport in the Squid Giant Axon

  • John M. Russell
  • Walter F. Boron

Abstract

The squid giant axon has been the object of study by neurobiologists for almost 50 years. It arises in the stellate ganglion as the syncytial fusion of several hundred small axons arising from separate ganglionic cells. Depending upon the squid species of origin, the diameter of the giant axon can vary from 200 µm to 1500 µm. The most commonly used species, Loligo pealei and L. forbesi, have axons with diameters of 400–900 µM. The large size of the axon functionally serves to permit the rapid conduction of action potentials by reducing the electrical resistance of the axoplasm. Thus, the axon serves to rapidly transmit excitatory signals to the musculature of the mantle wall thereby permitting rapid escape or attack movements.

Keywords

Giant Axon Dialysis Fluid Ehrlich Ascites Tumor Cell Exchange Flux External Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman, W. J., and Taylor, R. E., 1961, Leakage current rectification in the squid giant axon, Nature 190: 883–885.PubMedCrossRefGoogle Scholar
  2. Aiton, J. F., Chipperfield, A. R., Lamb, J. F., Ogden, P., and Simmons, N. L., 1981, Occurrence of passive furosemide-sensitive transmembrane potassium transport in cultured cells, Biochim. Biophys. Acta 646: 389–398.PubMedCrossRefGoogle Scholar
  3. Altamirano, A. A., and Russell, J. M., 1987, Coupled Na/K/Cl efflux: “Reverse” unidirectional fluxes in squid axons, J. Gen. Physiol. 89: 669–686.PubMedCrossRefGoogle Scholar
  4. Altamirano, A. A., Breitwieser, G. E., and Russell, J. M., 1988, Vanadate and fluoride effects on Na+-K+Cl- cotransport in squid giant axon, Am. J. Physiol. 256: C582–0586.Google Scholar
  5. Baker, P. F., Hodgkin, A. L., and Shaw, T. T., 1962, The effects of changes of internal ionic concentrations on the electrical properties of perfused giant axons, J. Physiol. (London) 164: 355–374.Google Scholar
  6. Bear, R. S., and Schmitt, F. O., 1939, Electrolytes in the axoplasm of the giant nerve fibers of the squid, J. Cell Comp. Physiol. 14: 205–215.CrossRefGoogle Scholar
  7. Boron, W. F., and DeWeer, P., 1976a, Intracellular pH transients in squid giant axons caused by CO2, NH3 and metabolic inhibitors, J. Gen. Physiol. 67: 91–112.PubMedCrossRefGoogle Scholar
  8. Boron, W. F., and DeWeer, P., 1976b, Active proton transport stimulation by CO2/HCO3-, blocked by cyanide, Nature 259: 240 - 241.PubMedCrossRefGoogle Scholar
  9. Boron, W. F., and Knakal, R. C., 1989, Intracellular pH-regulating mechanism of the squid axon. Interaction between DNDS and extracellular Na+ and HCO3-, J. Gen. Physiol. 93: 123 - 150.PubMedCrossRefGoogle Scholar
  10. Boron, W. F., and Knakal, R., 1989, Intracellular pH-regulating mechanism of the squid axon: Interaction between DNDS and extracellular Na+ and HCO3-, J. Gen. Physiol. 93: 123 - 150.PubMedCrossRefGoogle Scholar
  11. Boron, W. F., and Russell, J.M., 1983, Stoichiometry and ion dependencies of the intracellular-pH-regulating mechanism in squid giant axons, J. Gen. Physiol. 81: 373–399.PubMedCrossRefGoogle Scholar
  12. Boron, W. F., Hogan, E., and Russell, J. M., 1988, pH-sensitive activation of the intracellular-pH regulation system in squid axons by ATP-y-S, Nature 332: 262–265.Google Scholar
  13. Brinley, F. J., Jr., and Mullins, L. J., 1965, Variations in the chloride content of isolated squid axons, Physiologist 8: 121.Google Scholar
  14. Caldwell, P. C., and Keynes, R. D., 1960, The permeability of the squid giant axon to radioactive potassium and chloride ions, J. Physiol. (London) 154: 177–189.Google Scholar
  15. Chipperfield, A. R., 1986, The (Na+-K+-Cl-) co-transport system, Clin. Sci. 71: 465–476.PubMedGoogle Scholar
  16. DiPolo, R., and Beauge, L., 1987, In squid axons, ATP modulates Na+-Ca2+ exchange by a Ca2+ -dependent phosphorylation, Biochim. Biophys. Acta 897: 347–354.PubMedCrossRefGoogle Scholar
  17. Duhm, J., 1987, Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: Modes of operation, dependence on extracellular and intracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide, J. Membr. Biol. 98: 15–32.PubMedCrossRefGoogle Scholar
  18. Geck, P., Pietrzy, K. C., Burckhardt, B. C., Pfieffer, B., and Heinz, E., 1980, Electrically silent cotransport of Na, K, and Cl in Ehrlich cells, Biochim. Biophys. Acta 600: 432–447.PubMedCrossRefGoogle Scholar
  19. Gratecos, D., and Fischer, E. H., 1974, Adenosine 5’-(3-thiotriphosphate) in the control of phosphorylase activity, Biochem. Biophys. Res. Commun. 58: 960–967.PubMedCrossRefGoogle Scholar
  20. Haas, M., Schmidt, W. F., III, and McManus, T. J., 1982, Catecholamine-stimulated ion transport in duck red blood cells. Gradient effects in electrically neutral (Na+,K+,2Cl) co-transport, J. Gen. Physiol. 80: 125–147.PubMedCrossRefGoogle Scholar
  21. Hall, A. C., and Ellory, J. C., 1985, Measurement and stoichiometry of bumetanide-sensitive (2Na: 1K: 3C1) cotransport in ferret red cells, J. Membr. Biol. 85: 205–213.PubMedCrossRefGoogle Scholar
  22. Hescheler, J., Kameyama, M., Trautwein, W., Mieskes, G., and Soling, H.-D., 1987, Regulation of the cardiac calcium channel by protein phosphatases, Eur. J. Biochem. 165: 261–266.PubMedCrossRefGoogle Scholar
  23. Inoue, I., 1985, Voltage-dependent chloride conductance of the squid axon membrane and its blockade by some disulfonic stilbene derivatives, J. Gen. Physiol. 85: 519–538.PubMedCrossRefGoogle Scholar
  24. Keynes, R. D., 1963, Chloride in the squid giant axon, J. Physiol. (London) 168: 69–105.Google Scholar
  25. McManus, T. J., 1987, Na,K,2C1 co-transport: Kinetics and mechanism, Fed. Proc. 46: 2378–2381.Google Scholar
  26. Roos, A., and Boron, W. F., 1981, Intracellular pH, Physiol. Rev. 61: 296–434.PubMedGoogle Scholar
  27. Russell, J. M., 1976, ATP-dependent chloride influx into internally dialyzed squid giant axons, J. Membr. Biol. 28: 335–349.PubMedCrossRefGoogle Scholar
  28. Russell, J. M., 1979, Chloride and sodium influx: A coupled uptake mechanism in the squid giant axon, J. Gen. Physiol. 73: 801–818.PubMedCrossRefGoogle Scholar
  29. Russell, J. M., 1983, Cation-coupled chloride influx in squid axon: Role of potassium and stoichiometry of the transport process, J. Gen. Physiol. 81: 909–925.PubMedCrossRefGoogle Scholar
  30. Russell, J. M., 1984, Chloride in the squid giant axon, Curr. Top. Membr. Transp. 22: 177–193.CrossRefGoogle Scholar
  31. Russell, J. M., and Boron, W. F., 1976, Role of chloride transport in regulation of intracellular pH, Nature 264: 73–74.PubMedCrossRefGoogle Scholar
  32. Steinbach, H. B., 1941, Chloride in the giant axons of the squid, J. Cell Comp. Physiol. 17: 57–64.CrossRefGoogle Scholar
  33. Sun, I. Y.-C., Johnson, E. M., and Allfrey, V. G., 1980, Affinity purification of newly phosphorylated protein molecules. Thiophosphorylation and recovery of histones HI, H2B and H3 and the high mobility group protein HMG-1 using adenosine 5’-O-β-thiotriphosphate) and cyclic AMP-dependent protein kinase, J. Biol. Chem. 255: 742–749.PubMedGoogle Scholar
  34. Thomas, R. C., 1976, Ionic mechanism of the H+ pump in a snail neurone, Nature 262: 54–55.PubMedCrossRefGoogle Scholar
  35. Yasuoka, K., Kawakita, M., and Kaziro, Y., 1982, Interaction of adenosine-5’-O-β-thiotriphosphate) with Ca2+,Mg2+ -adenosine triphosphatase of sarcoplasmic reticulum, J. Biochem. 91: 1629–1637.PubMedGoogle Scholar
  36. Yates, D. W., and Duonce, V. C., 1976, The binding of nucleotides and bivalent cations to the calcium-and-magnesium ion-dependent adenosine triphosphatase from rabbit muscle sarcoplasmic reticulum, Biochem. J. 159: 719–728.PubMedGoogle Scholar
  37. Yount, R. G., 1975, ATP analogs, Adv. Enzymol. 43: 1–56.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • John M. Russell
    • 1
  • Walter F. Boron
    • 2
  1. 1.Department of Physiology and BiophysicsUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Department of Cellular and Molecular PhysiologyYale University, School of MedicineNew HavenUSA

Personalised recommendations