Fluorinated Tropinyl Esters for Application with Pet

  • Ali M. Emran
  • Jean-Luc Lim
  • Donna D. Flynn
  • Mohammad A. Emran
  • Abdallah Cherif
  • David Yang


Muscarinic acetylcholine receptors (MAR) are widely distributed throughout the central nervous system (CNS), the cardiovascular, and the gastrointestinal system, and regulate numerous important physiological functions.1 In the central nervous system (CNS), the majority of cholinergic synapses are muscarinic, and the activation of MAR by acetylcholine appears to play a role in neural mechanisms underlying memory, learning, arousal and the control of movement.2 Deficits in the cholinergic system have been implicated in memory disfunction associated with normal aging and Alzheimer’s disease.3 While studies concerning the number and functional status of MAR in normal aging is equivocal,4 MAR density is decreased in Alzheimer’s disease,5 Parkinson’s disease and Huntington disease. Delineation of muscarinic receptor subtypes on the basis of structure, pharmacology and anatomical location has further suggested that muscarinic receptor subtypes may be differentially affected.5,6 Alterations in MAR also have been noted to occur as a consequence of exposure to various pharmacologically active compounds including muscarinic agonists7 and antagonists,8 organophosphates9 and other acetylcholinesterase inhibitors,10 barbiturates,11 ethanol12 and antidepressants.13


Positron Emission Tomography Nuclear Magnetic Resonance Muscarinic Receptor Huntington Disease Muscarinic Acetylcholine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.M. Nathanson, Molecular properties of the muscarinic acetylcholine receptor, Ann. Rev. Neurosci. 10:195–236(1987).PubMedCrossRefGoogle Scholar
  2. 2.
    R.K. Goyal, Muscarinic receptor subtypes: Physiology and clinical implications, New Eng. J. Med. 321:1022–1028 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    R.T. Bartus, R.L. Dean, B. Beer and A.S. Lippa, The cholinergic hypothesis of geriatric memory disfunction, Science 217:408–417 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Quirion, I. Aubert, Y. Robitaille, S. Gauthier, D.M. Araujo and J-G. Chabot, Neurochemical deficits in pathological brain aging: Specificity and possible relevance for treatment strategies, Clin. Neuropharmacol. 13 (Suppl 3):S73–S80 (1990).CrossRefGoogle Scholar
  5. 5.
    D.C. Mash, D.D. Flynn and L.T. Potter, Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation, Science 228:1115–1117 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    D.M. Araujo, P.A. Lapchak, Y. Robitaille, S. Gauthier and R. Quirion, Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease, J. Neurochem. 50:1914–1923 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Feigenbaum and E.E. El-Fakahany, Regulation of muscarinic cholinergic receptor density in neuroblastoma cells by brief exposure to agonist: Possible involvement in desensitization of receptor function, J. Pharmacol. Exp. Ther. 233:134–140(1985).PubMedGoogle Scholar
  8. 8.
    A. Westlind, M. Grynfarh, B. Hedlund, T. Bartafi and K. Fuxe, Muscarinic supersensitivity induced by septal lesions or chronic atropine treatment, Brain Res. 225:131–141 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    L.G. Costa, B.W. Schwab, and S.D. Murphy, Differential alterations of cholinergic muscarinic receptors during chronic and acute tolerance to organophospho-rus insecticides, Biochem. Pharmacol. 31:3407 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    D.D. Flynn and D.C. Mash, Multiple in vitro interactions with differential in vivo regulation of muscarinic receptor subtypes by tetrahydroamino-acridine, J. Pharmacol. Exp. Ther. 250:573–581 (1989).PubMedGoogle Scholar
  11. 11.
    A. Nordberg, G. Wahlstrom and C. Larsson, Increased number of muscarinic binding sites in brain following chronic barbiturate treatment to rat, Life Sci. 26:231–237 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Wahlstrom and A. Nordberg, Relationship between voluntary ethanol intake in rats and changes in striatal muscarinic binding sites seen after induction of stable ethanol intake by an intermittent ethanol treatment, Brain Res. 474:189–191 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    E. Richelson and A. Nelson, Antagonism by antidepressants of neurotransmitter receptors of normal human brainin vivo., J. Pharmacol. Exp. Ther. 230:94–102 (1984).PubMedGoogle Scholar
  14. 14.
    R.E. Gibson, Quantitative changes in receptor concentrations as a function of disease, in: “Receptor-Binding Radiotracers,” W.C. Eckelman, ed., CRC Press, Inc., Boca Raton (1982).Google Scholar
  15. 15.
    E.K. Perry, R.H. Perry, G. Blessed, and B.E. Tomlinson, Necropsy evidence of central cholinergic deficits in senile dementia, Lancet 1:189 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    T.D. Reisine, H.I. Yamamura, E.D. Bird, E. Spokes, and S.J. Enna, Pre- and postsynaptic neurochemical alterations in Alzheimer’s disease, Brain Res. 159:477 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    D.M. Bowen, S.J. Allen, J.S. Benton, M.J. Goodhardt, E.A. Haan, A.M. Palmer, N.R. Sims, C.C.T. Smith, J.A. Spillane, M.M. Esiri, D. Neary, J.S. Snowdon, G.K. Wilcock, and A.N. Davison, Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease, J. Neurochem. 41:266–272 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    N.D. Volkow, J.S. Fowler, A.P. Woplf, G.-J. Wang, J. Logan, R. MacGregor, S.L. Dewey, D. Schyler, and R. Hitzemann, Distribution and Kinetics of Carbon-11-Cocaine in the Human Body Measured with PET, J. Nucl. Med. 33:521 (1992).PubMedGoogle Scholar
  19. 19.
    H. Repke, and H. Matthies, Synthese von Afflnitatsgelen zur Isolierung des mus-carinergen Acetycholinrezeptors, Z. Chem. 20(2):60 (1980).CrossRefGoogle Scholar
  20. 20.
    M.M. Vora, R.D. Finn, and T.E. Boothe, [N-methyl-11C-scopolamine: synthesis and distribution in rat brain, J. Lab. Compds. Radiopharm. 20:1229 (1983).CrossRefGoogle Scholar
  21. 21.
    G.K. Mulholland, C.A. Otto, D.M. Jewett, M.R. Kilbourn, R.A. Koeppe, P.S. Sherman, N.A. Petry, J.E. Carey, E.R. Atkinson, S. Archer, K.A. Frey, and D.E. Kuhl, Synthesis, Rodent Biodistribution, Dosimetry, Metabolism and Monkey Images of Carbon-11-Labelled (+)-2α-Tropanyl Benzilate: A Central Muscarinic Receptor Imaging Agent, J. Nucl. Med. 33:423 (1992).PubMedGoogle Scholar
  22. 22.
    R.E. Gibson, D.J. Weckstein, E.M. Jagoda, W.J. Rzeszotarski, R.C. Reba, and W.C. Eckelman, The characteristics of 1–125 4-IQNB and H-3 QNB in vivo andin vitro, J. Nucl. Med. 25:214 (1984).PubMedGoogle Scholar
  23. 23.
    W.C. Eckelman, R. Eng, W.J. Rzeszotarski, R.E. Gibson, B. Francis, and R.C. Reba, Use of 3-quinuclidinyl 4-iodobenzilate as a receptor binding radiotracer, J. Nucl. Med. 26:637 (1985).PubMedGoogle Scholar
  24. 24.
    W.C. Eckelman, R.C. Reba, W.J. Rzeszotarski, R.E. Gibson, T. Hill, B.L. Holman, T. Budinger, J.J. Conklin, R. Eng, and M.P. Grissom, External imaging of cerebral muscarinic acetylcholine receptors, Science 223:291–293 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    G.K. Mulholland, C.A. Otto, D.M. Jewett, M.R. Kilbourn, P.S. Sherman, R.A. Koeppe, D.M. Wieland, K.A. Frey, and D.E. Kuhl, Synthesis and preliminary evaluation of [C-11]-(+)-2-tropanyl benzilate (C-11 TRB) as a ligand for the muscarinic receptor, J. Nucl. Med. 29:932 (1988).Google Scholar
  26. 26.
    R.E. Gibson, W.C. Eckelman, F. Vieras, R.C. Reba, The distribution of the muscarinic acetylcholine receptor antagonists, quinuclidinyl benzilate and quinuclidinyl benzilate methiodide (both tritiated), in rat, guinea pig, and rabbit, J. Nucl. Med. 20:865 (1974).Google Scholar
  27. 27.
    C. Prenant, L. Barre, and C. Crouzel, Synthesis of [11C]-3-quinuclidinylbenzilate (QNB), J. Lab. Compds. Radiopharm. XXVII (11), 1257 (1989).CrossRefGoogle Scholar
  28. 28.
    A.M. Emran, T.E. Boothe, R.D. Finn, M.M. Vora, and P.J. Kothari, Use of 11C as a tracer for studying the synthesis of radiolabelled compounds. II: 2[11C]-5,5-diphenylhydantoin from [11C] cyanide, Int. J. Appl. Radiat. Isot. 37:1033 (1986).CrossRefGoogle Scholar
  29. 29.
    A.M. Emran, T.E. Boothe, R.D. Finn, M.M. Vora, and P.J. Kothari, Use of liquid chromatography for separation and determination of carrier species associated with the synthesis of no carrier-added 11C-labelled compounds, J. Radioanal. Nucl. Chem. 91:277 (1985).CrossRefGoogle Scholar
  30. 30.
    A.F. Shields, M.M. Graham, S.M. Kozawa, L.B. Kozell, J.M. Link, E.R. Swenson, A.M. Spence, J.B. Bassingthwaighte, and K.A. Krohn, Contribution of Labelled Carbon Dioxide to PET Imaging of Carbon-11-Labelled Compounds, J. Nucl. Med. 33:581 (1992).PubMedGoogle Scholar
  31. 31.
    W.J. Rzeszotarski, W.C. Eckelman, B.E. Francis, D.A. Simms, R.E. Gibson, E.M. Jagoda, M.P. Grissom, R.R. Eng, J.J. Conklin, and R.C. Reba, Synthesis and evaluation of radioiodinated derivatives of 1-azabicy-clo[2.2.2]oct-3-yl-α-tydroxy-α-(4-iodophenyl)-α-phenylacetate as potential radiopharmaceuticals, J. Med. Chem. 27:156 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    W.J. Rzeszotarski, R.E. Gibson, W.C. Eckelman, D.A. Simms, E.M. Jagoda, N.L. Ferreira, and R.C. Reba, Analogues of 3-Quinuclidinyl Benzilate, J. Med. Chem. 25, 1103(1982).PubMedCrossRefGoogle Scholar
  33. 33.
    T. Nozaki, and Y. Tanaka, The preparation of 18F-labelled aryl fluorides, Int. J. Appl. Radiat. Isot. 18:111 (1967).CrossRefGoogle Scholar
  34. 34.
    Y-C. Cheng and W.H. Prusoff, Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction, Biochem. Pharmacol. 22:3099–3108 (1973).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Emran, Fluorinated azabicycloesters as muscarinic receptor ligands for application with PET, in: “New Trends in Radiopharmaceutical Synthesis, Quality Assurance and Regulatory Control,” A. Emran, ed., Plenum Publishing Corporation, New York City (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ali M. Emran
    • 1
  • Jean-Luc Lim
    • 1
  • Donna D. Flynn
    • 2
  • Mohammad A. Emran
    • 3
  • Abdallah Cherif
    • 4
  • David Yang
    • 4
  1. 1.Positron Diagnostic and Research CenterThe University of Texas Health Science CenterHoustonUSA
  2. 2.School of Medicine, Department of PharmacologyUniversity of MiamiMiamiUSA
  3. 3.Medical SchoolThe University of Texas Southwestern Medical CenterDallasUSA
  4. 4.Imaging Research CenterM.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations