Advertisement

19F MR Characterization of Fluorinated Proteins and Relaxation Rate Enhancement with Gd-DTPA for Faster Imaging

  • Vimal D. Mehta
  • Ralph P. Mason
  • Padmakar V. Kulkarni
  • Penny Lea
  • Anca Constantinescu
  • Peter P. Antich

Abstract

Proton magnetic resonance imaging (MRI) is a well established clinical modality, which provides excellent anatomical definition. The judicious use of magnetic resonance (MR) contrast agents enhances anatomical definition and novel agents with enhanced specificity are being developed. Currently, there is a major thrust to achieve functional imaging providing local physiological parameters with high temporal and spatial resolution.

Keywords

Lattice Relaxation Time Proton Magnetic Resonance Imaging Relaxation Agent Total Imaging Time Sodium Trifluoroacetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.R. Thomas “The Biomedical Applications of Fluorine-19 NMR”, in: “Magnetic Resonance Imaging”, Vol II, CL. Partain et al, ed., 2nd edition, W.B. Saunders Comp., Philadelphia, 1536 (1988).Google Scholar
  2. 2.
    B.S. Selinsky, and C.T. Burt, “In Vivo 19F NMR”, in: Biological Magnetic Resonance, Vol 11, L.J. Berlinger and J. Reuben ed., Plenum Press, New York 241 (1992).Google Scholar
  3. 3.
    R.P. Mason, Non-invasive Physiology: 19F NMR of perfluorocarbons, Biomat Artif. Cells Immob. Biotechnol, 22, in the press (1994).Google Scholar
  4. 4.
    A.V. Ratner, R. Hurd, H.H. Muller, B.B. Simpson, W. Pitts, D. Shibatu, C. Sotak, and S.W. Young 19F MR imaging of the reticuloendothelial system, Magn. Reson. Med. 5:548 (1988).CrossRefGoogle Scholar
  5. 5.
    B. Barker, R.P. Mason, and R.M. Peshock, Echo planar imaging of perfluorocarbons, Magn. Reson. Imaging, 11, 1165 (1993).PubMedCrossRefGoogle Scholar
  6. 6.
    T.L. Ceckler, S.L. Gibson, R. Hilf, and R.G. Bryant, In situ assessment of tumor vascularity using fluorine NMR imaging, Magn. Reson. Med. 13:416 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    C.A. Branch, J.R. Ewing, J.A. Helpern, R.J. Ordidge, S. Butt, and M. A. Welch, Atraumatic quantitation of cerebral perfusion in cats by 19F magnetic resonance imaging, Magn. Reson. Med. 28:39 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    V.D. Mehta, P.V. Kulkarni, S.B. Rajur, R.P. Mason, E.E. Babcock, A. Constantinescu, and P.P. Antich, Novel molecular probes for 19F magnetic resonance imaging: synthesis & characterization of fluorinated polymers, Biomed. Chem. Letters, 2:527 (1992).CrossRefGoogle Scholar
  9. 9.
    V.D. Mehta, P.V. Kulkarni, R.P. Mason, and P.P. Antich, Fluorinated macromolecular probes for non-invasive assessment of pH by magnetic resonance spectroscopy, Biomed. Chem. Letters. 3:187 (1993).CrossRefGoogle Scholar
  10. 10.
    V.D. Mehta, S. Aravind, P.V. Kulkarni, R.P. Mason, and P.P. Antich, Fluorinated macromolecular probes as biosensors for non-invasive assessment of pH with magnetic resonance spectroscopy, J. Nucl. Med. 34:124 (1993).Google Scholar
  11. 11.
    V.D. Mehta, P.V. Kulkarni, R.P. Mason, A. Constantinescu, and P.P. Antich, Fluorinated proteins as new 19F magnetic resonance imaging and spectroscopy agents, 204th American Chemical Society National Meeting, (Division of Medicinal Chemistry), Washington, D.C., August 23–28, 1992.Google Scholar
  12. 12.
    V.D. Mehta, P.V. Kulkarni, R.P. Mason, A. Constantinescu, and P.P. Antich, Fluorinated proteins as potential 19F magnetic resonance imaging and spectroscopy agents, Bioconj. Chem. 5(3), 257 (1994).CrossRefGoogle Scholar
  13. 13.
    J.L. Evelhoch, and J.J.H. Ackerman, NMR T1 measurements in inhomogenous B1 with surface coils, J. Magn. Reson. 53:52 (1983).Google Scholar
  14. 14.
    A.V. Ratner, S. Quay, H.H. Muller, B.B. Simpson, R. Hurd, and S.W. Young, 19f relaxation rate enhancement and frequency shift with Gd-DTPA, Invest. Radiol, 24:224 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    B. Gong, M. Gill, D.B. Washburn, W.C. Davenport, D. Adams, and L. Kwock, Parameter optimization and calibaration of 19F magnetic resonance imaging at 1.5 tesla, Magn. Reson. Imaging. 9:101 (1991).PubMedCrossRefGoogle Scholar
  16. 16.
    R.P. Mason, P.P. Antich, E.E. Babcock, J. Gerberich, and R.L. Nunnally, Perfluorocarbon imaging in vivo: A 19F MRI study in tumor-bearing mice, Magn. Reson. Imaging. 7:475 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    M.D. Ogan, U. Schmiedl, M.E. Moseley, W. Grodd, H. Paajanen, and R.C. Brasch, Albumin labeled with Gd-DTPA an intravascular contrast-enhancing agent for magnetic resonance blood imaging: preparation and characterization, Invest. Radiol 22:665 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Daugherty, N.N. Becker, L.A. Scherrer, B.E. Sobel, J.J.H. Ackerman, J.W. Baynes and S.R. Thorpe, Non-invasive detection of protein metabolism in vivo by n.m.r. spectroscopy, Biochem. J. 264:829 (1989).PubMedGoogle Scholar
  19. 19.
    R.P. Mason, N. Bansal, E.E. Babcock, R.L. Nunnally, and P.P. Antich, A novel editing technique for 19F MRI: molecule-specific imaging, Magn. Reson. Imaging, 8:729 (1990).PubMedCrossRefGoogle Scholar
  20. 20.
    D.M. Freeman, H.H. Muller, R.E. Hurd, and S.W. Young, Rapid 19F Magnetic resonance imaging of perfluorooctyl bromide in vivo, Magn. Reson. Imaging, 6:61 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Vimal D. Mehta
    • 1
  • Ralph P. Mason
    • 1
  • Padmakar V. Kulkarni
    • 1
  • Penny Lea
    • 1
  • Anca Constantinescu
    • 1
  • Peter P. Antich
    • 1
  1. 1.Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations