Advertisement

Radionuclides and Their Application in Oncology Research

  • R. D. Finn
  • C. R. Divgi
  • S. J. Goldsmith
  • S. M. Larson
  • H. A. Macapinlac
  • A. M. Scott
  • S. D. J. Yeh

Abstract

The early detection of tumor, recurrence of tumor and the ability to correlate tumor response to therapy are important components of the Nuclear Medicine Service at Memorial Sloan Kettering Cancer Center. The benefit of a nuclear medicine procedure is derived from its potential to image functional processes in tissues and to monitor the response of these physiologic functions to pathologic processes and treatments. The majority of nuclear medicine methods in common practice today are qualitative in nature. The evolution of imaging equipment, the integrated computerized processing systems, and the specifically designed radiopharmaceutical compounds have the promise however, of greatly extending the assessment of physiologic processes. The potential now exists for an accurate estimate of quantitative biochemical processes both for normal and neoplastic tissues. Specific examples of radionuclides and radiopharmaceuticals applied to oncology are detailed.

Keywords

MIBG Uptake Metastatic Brain Tumor Nuclear Medicine Procedure Nuclear Medicine Method Autologous Bone Marrow Rescue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Doll and R. Peto, The causes of cancer, J. Natl. Cancer Inst. 66:1191(1981).PubMedGoogle Scholar
  2. 2.
    Trends in cancer mortality in industrial countries, edited by Davis D.I., and Hoel D., New York: NY Academy of Sciences, 1990, p.ix–xi.Google Scholar
  3. 3.
    E. Silverberg and J.A. Lubera, Cancer statistics, 1988. Cancer 38:5(1988).Google Scholar
  4. 4.
    J.F. Fraumeni, R.N. Hoover, S.S. Devesa, and L.J. Kinlen Epidemiology of cancer, in: “Cancer: Principles and Practice of Oncology,” V.T. DeVita, S. Hellman, and S.A. Rosenberg, ed., J.B. Lippincott, Philadelphia (1989).Google Scholar
  5. 5.
    A.M. Scott and S.M. Larson, Tumor diagnosis and therapy, in: “Radiologic Clinics of North America,” E. Coleman, ed., W.B. Saunders, Inc., New York (1993).Google Scholar
  6. 6.
    R.A. Weinberg, Tumor suppressor genes, Science 254:1138 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Wynford-Thomas, Oncogenes and anti-oncogenes: the mole-cular basis for tumor behavior, J. Path., 165:187 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Macapinlac, A. Scott, F. Daghighian, S. Yeh, J. Ginos, J. Tjuvajev, J. Zhang, R. Finn, S. Larson, and R. Blasberg, I-131-Iododeoxyuridine (IUdR) imaging of brain tumor proliferative activity, Clin. Nucl. Med. 18:263(1993).CrossRefGoogle Scholar
  9. 9.
    J. Ginos, R. Finn, P. Kothari, R. Blasberg, and S. Larson, An investigation into the preparation and chemical stability of radiohalogenated deoxyuridines (UdR) for SPECT and PET imaging. Third International Symposium on Radiohalogens, Banff Centre for Conferences, Banff, Alberta, Canada 9/20–23, 1992 (Abstract).Google Scholar
  10. 10.
    H. Macapinlac, J. Finlay, C. Caluser, S. Yeh, A. Scott, R. DeLaPaz, K. Lindsley, R. Finn, S. Larson, and H. Abdel Dayem, Comparison of Tl-201 SPECT and F- 18 FDG PET imaging with MRI (Gd-DTPA) in the evaluation of recurrent supratentorial and infratentorial tumors, J. Nucl. Med. 33:867(1992).Google Scholar
  11. [11].
    H. Macapinlac, A. Scott, C. Caluser, S. Yeh, J. Finlay, R. DeLaPaz, K. Lindsley, S. Al-Mohannadi, H. Abdel-Dayem, and S. Larson, Utility of Tl-201 SPECT and F-18 FDG PET as an adjunct to CT and MR Imaging in the evaluation of metastatic brain tumors, Radiology 185:P233(1992).Google Scholar
  12. 12.
    C.A. Pellizari, G.T.Y. Chen, et al., Accurate three dimensional registration of CT, PET and/or MRI inages of the brain, J. Comput. Assist. Tomogr. 14:20(1989).CrossRefGoogle Scholar
  13. 13.
    H. Macapinlac, J. Zhang, H. Kalaigian, S. Yeh, A. Scott, C. Caluser, R. DeLaPaz, J. Finlay, R. Blasberg, G. DiResta, R. Finn, K. Lindsley, M. Bernstein, and S. Larson, Registration of Tl-201 SPECT and PET images in patients with primary brain tumors, Radiology 185:P234(1992).Google Scholar
  14. 14.
    I. Pastan, M.M. Gottesmann, Multiple-drug resistance in human cancer, N. Eng. J. Med. 316:1388(1987).CrossRefGoogle Scholar
  15. 15.
    V. Ling, P-glycoprotein and resistance to anti-cancer drugs, in: “Accomplishments in Cancer Research 1991,” J.G. Fortner and J.E. Rhoads, eds., J.B. Lippincott Co., Philadelphia(1991).Google Scholar
  16. 16.
    J.M. Fort, and W.N. Hait. Pharmacology of drugs that alter multidrug resistance in cancer, Pharmacol. Rev. 42:155(1990).Google Scholar
  17. 17.
    T. Tsuruo, Mechanisms of multidrug resistance and im-plications for therapy, Jpn. J. Cancer Res. 79:285(1988).Google Scholar
  18. 18.
    T. Tsuruo, H. Iida, S. Tsukagoshi, et al., Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil, Cancer Res. 41:1967 (1981).PubMedGoogle Scholar
  19. 19.
    L.M. Slater, P. Sweet, J. Stupecky, et al., Cyclosporin A reverses vincristine and daunorubicin resistance in acute lymphatic leukemia in vitro, J. Clin. Invest. 77:1405(1986).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Naito, T. Oh-Hara, A. Yamazaki, et al., Reversal of multidrug resistance by an immunosuppressive agent FK-506, Cancer Chemother. Pharmacol. 29:195(1992).Google Scholar
  21. 21.
    D.E. Merkel, S.A.W. Fuqua, A.K. Tandon, S.M. Hill, A.U. Buzdar, and W.L. McGuire, Electrophoretic analysis of 248 clinical breast cancer specimens for P-glyco-protein overexpression or gene amplification, J. Clin. Oncol. 7:1129(1989).PubMedGoogle Scholar
  22. 22.
    P. Verelle, F. Meissonmier, Y. Fonck, et al., Clinical relevance of immunohistochemical detection of multidrug-resistance in breast carcinoma, J. Natl. Cancer Inst. 83:111(1991).CrossRefGoogle Scholar
  23. 23.
    B.M. Mehta, E. Rosa, J.D. Fissekis, J.R. Bading, J.L. Biedler, and S.M. Larson, In-vivo identification of tumor multidrug resistance with 3H-colchicine, J. Nucl. Med. 33:1373(1992).PubMedGoogle Scholar
  24. 24.
    H. Hamada and T. Tsuruo, Functional role for the 170- to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies, Proc. Natl. Acad. Sci. U.S.A. 83:7785(1986).PubMedCrossRefGoogle Scholar
  25. 25.
    H.J. Broxterman, C.M. Kuiper, G.J. Schuurhuis, T. Tsuruo, H.M.N. Pinedo, and J. Kankelma, Increase of daunorubicin and vincristine accumulation in multidrug resistant human ovarian carcinoma cells by a monoclonal antibody reacting with P-glycoprotein, Biochem. Pharmacol. 37:2389(1989).Google Scholar
  26. 26.
    T. Tsuruo, H. Hamada, S. Sato, et al., Inhibition of multidrug-resistant human tumor growth in athymic mice by anti-P-glycoprotein monoclonal antibodies. Jpn. J. Cancer Res. 80:627(1989).PubMedCrossRefGoogle Scholar
  27. 27.
    J.W. Pearson, W.E. Fogler, K. Volker, et al., Reversal of drug resistance in a human colon cancer xenograft expressing MDR1 complementary DNA by in vivo administration of MRK-16 monoclonal antibody, J. Natl. Cancer Inst. 83:1386(1991).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Naito, H. Tsuge, C. Kuroko, et al., Enhancement of cellular accumulation of cyclosporine by anti-P-glycoprotein monoclonal antibody MRK-16 and synergistic modulation of multidrug resistance. J. Natl. Cancer Inst. 85:311(1993).PubMedCrossRefGoogle Scholar
  29. 29.
    P.J. Fraker and J.C. Speck, Protein and cell membrane iodination with a sparingly soluble chloramide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycouril, Biochem. Biophys. Res. Commun. 80:849(1978).CrossRefGoogle Scholar
  30. 30.
    J.L. Biedler, D. Casals, T-D. Chang, M.B. Meyers, B.A. Spengler, and R.A. Ross, Multidrug-resistant human neuroblastoma cells are more diffferentiated than controls and retinoic acid further induces lineage-specific differentiation, Adv. Neuroblast. Res. 3:181(1991).Google Scholar
  31. 31.
    J.C. Sisson, M.S. Fager, T.W. Valk, M.D. Gross, D.P. Swanson, D.M. Wieland, M.C. Tbes, and W.H. Beierwaltes, Scintigraphic localization of pheo-chromocytoma, N. Engl. J. Med. 305:12(1981).PubMedCrossRefGoogle Scholar
  32. 32.
    S.D.J. Yeh, L. Helson, and R.S. Benua, Correlation between iodine-131 MIBG imaging and biological markers in advanced neuroblastoma, Clin. Nucl. Med. 13:46(1988).Google Scholar
  33. 33.
    S.D.J. Yeh, S.M. Larson, L. Burch, R.H. Kushner, M. Laquaglia, R.D. Finn, N.K-V. Cheung, Radioimmuno-detection of neuroblastoma with iodine-131–3F8: correlation with biology, iodine-131-metaiodobenzylguanidine and standard diagnostic modalities, J. Nucl. Med. 32:769(1991).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. D. Finn
    • 1
  • C. R. Divgi
    • 1
  • S. J. Goldsmith
    • 1
  • S. M. Larson
    • 1
  • H. A. Macapinlac
    • 1
  • A. M. Scott
    • 1
  • S. D. J. Yeh
    • 1
  1. 1.Nuclear Medicine Service, Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations