Development and Production of Radiopharmaceuticals for PET

  • Willem Vaalburg
  • Philip H. Elsinga
  • Tjibbe J. de Groot
  • Gerben M. Visser
  • Aren M. van Waarde
  • Sytse Zijlstra


Short-lived labelled positron emitting radionuclides are mainly applied for the non invasive investigation of regional biochemistry, physiology, effect of therapy and for the pharmacokinetics of drugs in the human body by positron emission tomography (PET). PET is gradually transforming from a purely research modality into one of mainstream clinical practice.


Positron Emission Tomography Positron Emission Tomography Study Radiochemical Yield Protein Synthesis Rate Microwave Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vaalburg W, Coenen HH, Crouzel C., Eisinga PH, Langström B, Lemaire C and Meyer GJ, 1992, Amino acids for the measurements of protein synthesis in vivo by PET, Nucl Med Biol 19, 227–237.Google Scholar
  2. 2.
    Bolster JM, Vaalburg W, Paans AMJ, van Dijk TH, Elsinga PH, Zijlstra JB, Piers DA, Mulder NH, Woldring MG and Wynberg H, 1986, Carbon-11 labelled tyrosine to study tumor metabolism by Positron Emission Tomography (PET), Eur J Nucl Med 12, 321–324.PubMedCrossRefGoogle Scholar
  3. 3.
    Christman D, Crawford EJ, Friedkin M and Wolf AP, 1972, Detection of DNA synthesis in intact organisms with positron-emitting [Methyl- C]thymidine, Proc Natl Acad Sci U.S.A., 988–992.Google Scholar
  4. 4.
    Van der Borght T, Labar D, Pauwels S and Lambrotte L, 1991, Production of [2–11C]Thymidine for quantification of cellular proliferation with PET, Appl Radiat hot 42, 103–104.CrossRefGoogle Scholar
  5. 5.
    Shields AF, Lim K, Grierson J, Link J and Krohn KA, 1990 Utilization of labelled thymidine in DNA synthesis: studies for PET, J Nucl Med 31, 337–342.PubMedGoogle Scholar
  6. 6.
    Poupeye EM, Goethals PP, Dams RF, de Leenheer AP and van Eykeren ME, 1993, Evaluation of [11C]thymidine for measurements of cell proliferation in fast dividing tissues, Nucl Med Biol 20, 359–363.PubMedCrossRefGoogle Scholar
  7. 7.
    Boullais C., Crouzel C and Syrota A, 1985, Synthesis of 4-(3-t-butylamino-2-hy-droxypropoxy)benzimidazol-2[11C]-one (CGP 12177), J Label Compd Radiopharm 23, 565–567.CrossRefGoogle Scholar
  8. 8.
    Van Waarde A, Meeder JG, Blanksma PK, Brodde OE, Visser GM, Elsinga PH, Paans AMJ, Vaalburg W and Lie KI, 1992, Uptake of radioligands by rat heart and lung in vivo: CGP 12177 does and CGP 26505 does not reflect binding to β-adrenoceptors, Europ J Pharm 222, 107–112.CrossRefGoogle Scholar
  9. 9.
    Elsinga PH, van Waarde A, Visser GM and Vaalburg W, 1993, Synthesis of carbon — 11 CGP 20712 A, a selective β1- adrenoceptor ligand for PET. J Label Comp Radiopharm (abs) 32, 158.Google Scholar
  10. 10.
    de Groot TJ, 1993, Synthesis and evaluation of [18F]fluoroprogestins and [18F]fluorometoprolol — Receptor binding ligands for PET, Thesis, Groningen.Google Scholar
  11. 11.
    Berridge MS, Cassidy EH, Terris AH and Vesselle JM, 1992, Preparation and in vivo binding of [11C]carazolol, a radiotracer for the beta-adrenergic receptor, Nucl Med Biol 19, 563–569.Google Scholar
  12. 12.
    Zheng L and Berridge MS, 1993, [18F]Fluoroacetone for radiopharmaceutical synthesis: preparation of 18F-carazolol (abs), J.Label comp Radiopharm, 32, 296–297.Google Scholar
  13. 13.
    Kinsey BM, Barber R and Tewson TJ, 1992, Synthesis of fluorine-18 fluorocarazolol: a ligand for the β-adrenergic receptor (abs.), J Label Radiopharm, 32, 298–299.Google Scholar
  14. 14.
    Ramsby S, Neumeyer JL, Grigoriadis D and Seeman P, 1989, 2-haloaporphines as potent dopamine agonists. J Med Chem, 32, 1198.PubMedCrossRefGoogle Scholar
  15. 15.
    Zijlstra S, de Groot TJ, Kok LP, Visser GM and Vaalburg W, 1993, Behavior of reaction mixtures under microwave conditions: use of sodium salts in microwave-induced N-[18F]fluoroalkylations of aporphine and tetralin derivatives, J Org Chem 58, 1643–1645.CrossRefGoogle Scholar
  16. 16.
    Cannon JG, Kim JC., Aleem MA and Long JP, 1972, Centrally acting emetics. 6. Derivatives of β-naphtylamine and 2-indanamine, J Med Chem, 15, 348.PubMedCrossRefGoogle Scholar
  17. 17.
    Woodruff GN, Elkhawad AO and Pinder RM, 1974, Long lasting stimulation of locomotor activity produced by intra ventricular injection of a cyclic analogue of dopamine into conscious mice, Eur J Pharmacol, 25, 80.CrossRefGoogle Scholar
  18. 18.
    Louwerens JW, Buddingh JA, Zijlstra S, Pruim J, Korf J, Paans AMJ, Vaalburg W and Slooff CJ, 1993 Dopamine (D2)-receptor occupancy in clozapine-treated patients as measured by positron emissie tomography using 10FESP. In: new generation of antipsychotic drugs: novel mechanisms of action. Brunello N, Mendlewicz J and Racagni G eds. Int. Acad. Biomed Drug Res. Bascl. Karger, 4, 130–135.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Willem Vaalburg
    • 1
  • Philip H. Elsinga
    • 1
  • Tjibbe J. de Groot
    • 1
  • Gerben M. Visser
    • 1
  • Aren M. van Waarde
    • 1
  • Sytse Zijlstra
    • 1
  1. 1.PET CenterUniversity Hospital GroningenGroningenThe Netherlands

Personalised recommendations