Advertisement

Strategies in Synthesizing Short-Lived Radiopharmaceuticals for Positron Emission Tomography

  • Thomas Chaly
  • Dibyendu Bandyopadhyay
  • Donald Margouleff

Abstract

Positron Emission Tomography (PET) is one of the most exciting medical imaging modalities and it provides quantitative three dimensional images of specific biochemical, physiological and pathophysiological processes in living organs like brain, heart, liver, pancreas etc1. PET uses radiopharmaceuticals that are labeled with short-lived isotopes. The majority of these short-lived radioisotopes are elements of the chemical compounds of biological systems (11C., 13N, 15O, etc.). 18F is used to substitute a hydrogen atom of an organic molecule of interest with the assumption that the biological activity is not significantly altered. Over the years PET has proved to be an effective diagnostic modality and the demand for clinical PET has increased considerably. Clinical utility of PET has been useful for the evaluation of myocardial viability and for the differentiation of radiation necrosis from tumor recurrence2,3,4. Evaluation of brain disorders such as epilepsy, Parkinson’s disease, Alzheimer’s disease, Stroke etc. can be achieved by measuring the regional brain function5,6,7. Therefore, synthesis of the radiopharmaceuticals labeled with positron emitting radioisotopes is the key to the success of this state of the art diagnostic modality.

Keywords

Positron Emission Tomography Radiation Necrosis Positron Emission Compute Tomography Clinical Positron Emission Tomography Routine Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Phelps and J. C. Mazziotta, Positron Emission Tomography: Human brain function and biochemistry, Science. 228:799 (1985)PubMedCrossRefGoogle Scholar
  2. 2.
    R.C. Marshall, J.H. Tillisch, M.E. Phelps, S.C. Huang, R. Carson, E. Henzg and H.R. Schelbert, Identification and differentiation of resting myocardial ischemia and infarction in man with positron emission computed tomography, 18F labeled fluorodeoxyglucose and 13N ammonia, Circulation . 67:766 (1983)PubMedCrossRefGoogle Scholar
  3. 3.
    K.L. Gould, Clinical cardiac positron emission tomography: state of the art., Circulation. 84 (Suppl I):22 (1991)Google Scholar
  4. 4.
    N.J. Patronas, G. Dichir and R.A. Brooks, Works in progress: 18F-fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain, Radiology . 144:885 (1982)PubMedGoogle Scholar
  5. 5.
    J.C. Mazziotta and M.E. Phelps, Positron emission tomography studies of the brain, in: “Positron Emission Tomography”, M.E. Phelps, J.C. Mazziota and H.R. Schelbert eds., Raven Press, New York (1986)Google Scholar
  6. 6.
    J.J. Frost and H.N. Wagner. “Quantitative Imaging”, Raven Press, New York (1990)Google Scholar
  7. 7.
    J.C. Baron, D. Comar, L. Farde, J.L. Martinot and B. Mazoyer. “Brain Dopaminergic Systems: Imaging with Positron Tomography”, Kluwer Academic Publishers, (1991)CrossRefGoogle Scholar
  8. 8.
    K. Hamacher, H.H. Coenen and G. Stocklin, Efficient stereospecific synthesis of no-carrier added 2–18F-2-fluorodeoxyglucose using aminopolyether supported nucleophilic substitution, J. Nucl Med. 27:235 (1986)PubMedGoogle Scholar
  9. 9.
    T. Chaly, R. Mattacchieri, J.W. Velez, J.R. Dahl and D. Margouleff, A large scale manual production of 18F-FDG using a synthetic unit made of sterile disposable components and operated by a master slave manipulator, Appl. Radiat, hot. 41:29 (1990)CrossRefGoogle Scholar
  10. 10.
    T. Chaly, J.R. Dahl, R. Matacchieri, D. Bandyopadhyay, A. Belakhlef, V. Dhawan, S. Takikawa, W. Robeson, D. Margouleff and D. Eidelberg, Synthesis of 6–18F-fluorodopamine with a synthetic unit made of primarily sterile disposable components and operated by a master slave manipulator, Appl. Radiat, hot. 44:869 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Thomas Chaly
    • 1
    • 2
  • Dibyendu Bandyopadhyay
    • 1
  • Donald Margouleff
    • 1
  1. 1.Department of MedicineCornell University Medical CenterManhassetUSA
  2. 2.Department of Research, North Shore University HospitalCornell University Medical CenterManhassetUSA

Personalised recommendations