Advertisement

Syntheses and Reactions of Bicyclic Heterocyclic Nucleosides and Nucleotides

  • Wolfgang Pfleiderer

Abstract

Well-known heterocyclic ring systems belong to the group of bicyclic benzo-fused 6-membered ring nitrogen heterocycles, wherein the parent compounds may be regarded as electron-deficient systems or heteroethylenics according to their structural features. The heteroaromatics of this group can either be quaternized as the ring N atom or afford from valency reasons tautomeric substituents such as the hydroxy or mercapto group in order to achieve neutral molecules on the glycosylation reactions. Most of the nucleosides described in this chapter are therefore derived mainly from various hydroxy and mercapto derivatives of quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, 1,3-benzoxazine, and 1,2,3-benzotriazine. The corresponding nucleotides have not yet been reported in this field.

Keywords

Sugar Moiety Sodium Methoxide Glycosidic Linkage Ethyl Pyruvate Pyrimidine Nucleoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Wagner and R. Schmidt, Arch. Pharm. 298, 466 (1965)Google Scholar
  2. 2.
    G. Wagner and R. Schmidt, Arch. Pharm. 298, 481 (1965)Google Scholar
  3. 3.
    G. Wagner and R. Schmidt, Arch. Pharm. 300, 772 (1967)Google Scholar
  4. 4.
    E. Fischer and B. Helferich, Ber. Dtsch. Chem. Ges. 47, 210 (1914).Google Scholar
  5. 5.
    G. Wagner and R. Schmidt, Z. Chem. 4, 145 (1964).Google Scholar
  6. 6.
    T. Sabalitschka and F. L. Schweitzer, Arch. Pharm. 267, 675 (1929).Google Scholar
  7. 7.
    G. E. Hilbert and T. B. Johnson, j. Am. Chem. Soc. 52, 4489 (1930).Google Scholar
  8. 8.
    G. Zemplén and E. Pacsu, Ber. Dtsch. Chem. Ges. 62, 1613 (1929)Google Scholar
  9. G. Zemplén, A. Gerecs, and J. Hadacsy, Ber. Dtsch. Chem. Ges. 69, 1827 (1936).Google Scholar
  10. 9.
    U. Niedballa and H. Vorbrüggen,, J. Org. Chem. 39, 3654–3660 (1974).PubMedGoogle Scholar
  11. 10.
    L. Birkofer, A. Ritter, and H. P. Kühltau, Chem. Ber. 97, 934 (1964).Google Scholar
  12. 11.
    G. Wagner and R. Schmidt, Pharmazie 20, 549 (1965).PubMedGoogle Scholar
  13. 12.
    A. A. Magnin, A. M. Stephen, and R. J. H. Davies, Tetrahedron 28, 3069 (1972).Google Scholar
  14. 13.
    E. Menachemoff, O. Awerbuch, and R. R. G. Haber, U.S. Patent 4,402,945, Sept. 6, 1983; Chem. Abstr. 99, 212–879 (1983).Google Scholar
  15. 14.
    M. L. Sinnott and S. G. Withers, Biochem., 7. 143, 751 (1974).Google Scholar
  16. 15.
    G. Legler, M. L. Sinnott, and S. G. Withers, j. Chem. Soc. Trans. 2 1980, 1376.Google Scholar
  17. 16.
    R. S. T. Loeffler, M. L. Sinnott, B. D. Sykes, and S. G. Withers, Biochem. f. 177, 145 (1979).Google Scholar
  18. 17.
    G. Y. Kuo, B. Y. H. Hwang, and D. B. Staiger, Biochem. Pharmacol. 35, 1613 (1986).PubMedGoogle Scholar
  19. 18.
    G. Wagner and D. Heller, Z. Chem. 4, 349 (1964).Google Scholar
  20. 19.
    G. Wagner and D. Heller, Z. Chem. 4, 386 (1964).Google Scholar
  21. 20.
    G. Wagner and D. Heller, Z. Chem. 5, 184 (1965).Google Scholar
  22. 21.
    G. Wagner and D. Heller, Arch. Pharm. 300, 783 (1967).Google Scholar
  23. 22.
    G. Wagner and D. Heller, Z. Chem. 4, 28 (1964).Google Scholar
  24. 23.
    G. Wagner and D. Heller, Z. Chem. 4, 71 (1964).Google Scholar
  25. 24.
    G. Wagner and D. Heller, Arch. Pharm. 299, 768 (1966).Google Scholar
  26. 25.
    G. Wagner and D. Heller, Pharmazie 22, 233 (1967).Google Scholar
  27. 26.
    M. G. Stout and R. K. Robins, J. Org. Chem. 33, 1219 (1968).PubMedGoogle Scholar
  28. 27.
    J. J. Fox and J. Wempen, Ado. Carbohydr. Chem. 14, 283 (1959).Google Scholar
  29. 28.
    J. Pliml and M. Prystas, Ado. Heterocycl. Chem. 8, 115 (1967).Google Scholar
  30. 29.
    L. Birkofer and A. Ritter, Angew. Chem. 77, 414 (1965); Angew. Chem. Int. Ed. Engl. 4, 417 (1965).Google Scholar
  31. 30.
    E. Wittenburg, Collect. Czech. Chem. Commun. 36, 246 (1971).Google Scholar
  32. 31.
    H. Vorbrüggen and G. Höfle, Chem. Ber. 114, 1256 (1981).Google Scholar
  33. 32.
    M. Dunkel and W. Pfleiderer, Nucleoside Nucleotides 10, 799 (1991).Google Scholar
  34. 33.
    A. Hampton and A. W. Nichol, Biochemistry 5, 2076 (1966).PubMedGoogle Scholar
  35. 34.
    M. G. Stout and R. K. Robins,. Heterocycl. Chem. 6, 89 (1969).Google Scholar
  36. 35.
    G. Wagner and F. Suess, Pharmazie 24, 35 (1969).PubMedGoogle Scholar
  37. 36.
    M. F. Abdel-Megeed and M. A. H. Saleh, Sulfur Lett. 6, 115 (1987).Google Scholar
  38. 37.
    K. A. Watanabe, D. H. Hollenberg and J. J. Fox,, J. Carbohydr. Nucleosides Nucleotides 1, 1 (1974).Google Scholar
  39. 38.
    D. Marmet, P. Boullanger, and G. Descotes, Tetrahedron Lett. 21, 1459 (1980).Google Scholar
  40. 39.
    D. Marmet, P. Boullanger, and G. Descotes, Can. j. Chem. 59, 373 (1981).Google Scholar
  41. 40.
    H. Takahashi, N. Nimura, and H. Ogura, Chem. Pharm. Bull. 27, 1143 (1979).Google Scholar
  42. 41.
    J. P. Ferris, S. Singh, and T. A. Newton,.7. Org. Chem. 44, 173 (1979).Google Scholar
  43. 42.
    E. Frass and M. Draminski, Pol. y. Chem. 54, 189 (1980).Google Scholar
  44. 43.
    E. Wittenburg, Chem. Ber. 101, 1095, 1614 (1968).PubMedGoogle Scholar
  45. 44.
    E. Krajewska and D. Shugar, Biochem. Pharmacol. 31, 1097 (1982).PubMedGoogle Scholar
  46. 45.
    M. P. Schweizer, E. B. Bana, J. T. Witkowski, and R. K. Robins, y. Am. (:hem. Soc. 95, 3770 (1973).Google Scholar
  47. 46.
    G. Wagner and H. Frenzel, Z. Chem. 5, 104 (1965).Google Scholar
  48. 47.
    G. Wagner and H. Frenzel, Arch. Pharma. 300, 433 (1976).Google Scholar
  49. 48.
    F. Reisser and W. Pfleiderer, Chem. Ber. 99, 547 (1966).Google Scholar
  50. 49.
    R. S. Tipson, J. Biol. Chem. 130, 55 (1939)Google Scholar
  51. B. R. Baker, Ciba Foundation Symposium, Chemistry and Biology of Purines, p. 120, Churchill, London (1957).Google Scholar
  52. 50.
    W. Pfleiderer and M. Schranner, Chem. Ber. 104, 1915 (1971).Google Scholar
  53. 51.
    Z. Kazimierczuk and W. Pfleiderer, Liebigs Ann. Chem. 1982, 754.Google Scholar
  54. 52.
    U. Niedballa and H. Vorbrüggen, Angew. Chem. 82, 449 (1970).Google Scholar
  55. 53.
    K. Keppeler and E. DeClercq, Arch. Pharm. (Weinheim) 320, 271 (1987).Google Scholar
  56. 54.
    G. Wagner and D. Singer, Pharmazie 20, 11 (1965).PubMedGoogle Scholar
  57. 55.
    G. Wagner and H. Gentzsch, Arch. Pharm. 301, 923 (1968).Google Scholar
  58. 56.
    K. Reyle, K. Meyer, and T. Reichstein, Helv. Chim. Acta 33, 1541 (1950).Google Scholar
  59. 57.
    H. G. Latham, E. L. May, and E. Mossettig, J. Org. Chem. 15, 884 (1950).Google Scholar
  60. 58.
    C. Ducrocq, E. Bisagni, J. M. L. Hoste, J. Mispelter, and J. Defaye, Tetrahedron 32, 773 (1976).Google Scholar
  61. 59.
    T. Itoh, S. Kitano, and Y. Mizuno, J. Heterocycl. Chem. 9, 465 (1972).Google Scholar
  62. 60.
    R. Ishido, T. Shimidate, and T. Sato, Bull. Chem. Soc. Jpn. 34, 1437 (1961)Google Scholar
  63. 61.
    P. C. Jain, S. K. Chatterjee, and N. Anand, Indian J. Chem. 4, 403 (1966).Google Scholar
  64. 62.
    N. Yamaoka, K. Aso, and K., Matsuda, J. Org. Chem. 30, 149 (1965).Google Scholar
  65. 63.
    T. Itoh and Y. Mizuno, Heterocycles 5, 285 (1976).Google Scholar
  66. 64.
    Y. Mizuno, M. Ikehara, T. Itoh, and K. Saito, J. Org. Chem. 28, 1837 (1963).Google Scholar
  67. 65.
    B. M. Lynch and S. C. Sharma, Can. J. Chem. 54, 1029 (1976).Google Scholar
  68. 66.
    H. U. Blank and J. J. Fox, J. Am. Chem. Soc. 90, 7175 (1968)Google Scholar
  69. H. U. Blank, I. Wempen, and J. J. Fox, J. Org. Chem. 35, 1131 (1970).PubMedGoogle Scholar
  70. 67.
    C. Tapiero and J. L. Imbach, J. Heterocycl. Chem. 12, 439 (1975).Google Scholar
  71. 68.
    G. Di Sabato, Biochemistry 9, 4594 (1970).PubMedGoogle Scholar
  72. 69.
    L. J. Arnold, N. J. Oppenheimer, C. Y. Lee, and N. O. Kaplan, Biochemistry 18, 2787 (1979).PubMedGoogle Scholar
  73. 70.
    M. R. Guerin and J. Torreilles, Biochimie 64, 527 (1982).PubMedGoogle Scholar
  74. 71.
    J. Torreilles and M. R. Guerin, Biochim. Biophys. Acta 869, 265 (1986).PubMedGoogle Scholar
  75. 72.
    J. Everse, E. C. Zoll, L. Kahan, and N. O.Kaplan, Bioorg. Chem. 1, 207 (1971).Google Scholar
  76. 73.
    J. F. Towell, V. G. Erwin, and R. A. Deitrich, J. Med. Chem. 22, 1011 (1979).Google Scholar
  77. 74.
    G. Branlant, Fur. J. Biochem. 121, 99 (1982).Google Scholar
  78. 75.
    G. Branlant, Eur. J. Biochem. 121, 407 (1982).PubMedGoogle Scholar
  79. 76.
    J. Marchand, J. Torreilles, M. C. Guerin, B. Descomps, A. Crastes de Paulst, M. Gabriel, and D. Larcher, Biochim. Biophys. Acta 707, 7 (1982).PubMedGoogle Scholar
  80. 77.
    B. H. Rizkalla, A. D. Broom, M. G. Stout, and R. K. Robins, J. Org. Chem. 37, 3975 (1972).PubMedGoogle Scholar
  81. 78.
    B. H. Rizkalla and A. D. Broom, J. Org. Chem. 37, 3980 (1972).PubMedGoogle Scholar
  82. 79.
    J. A. Cavins, Proc. Am. Ass. Soc. Cancer Res. 7, 12 (1966).Google Scholar
  83. 80.
    G. L. Anderson and A. D. Broom, J. Org. Chem. 42, 997 (1977).PubMedGoogle Scholar
  84. 81.
    J. L. Imbach, J. L. Barascut, B. Kam, B. Rayner, and C. Tapiero, J. Heterocycl. Chem. 10, 1069 (1973).Google Scholar
  85. 82.
    Y. Furukawa and M. Honjo, Chem. Pharm. Bull. 16, 1076 (1968).PubMedGoogle Scholar
  86. 83.
    L. V. Ektova, V. N. Tolkachev, N. L. Radyukina, T. P. Ivanova, Y. V. Dobrynin, and M. N. Preobrazhenskaya, Biorog. Khim. 5, 1369 (1979).Google Scholar
  87. 84.
    T. A. Khwaja, T. T. Lee, J. C. Varven, A. M. Mian, and K. M. A. Sheikh, Curr. Chemother., Proc. Int. Congr. Chemother., 10th 2, 1193 (1978).Google Scholar
  88. 85.
    W. O. Foye, J. M. Kauffman, and Y. H. Kim, J. Heterocycl. Chem. 19, 497 (1982).Google Scholar
  89. 86.
    M. W. Winkley, J. Chem. Soc. C 1970, 1869.Google Scholar
  90. 87.
    R. L. Tolman, G. L. Tolman, R. K. Robins, and L. B. Townsend, J. Heterocycl. Chem. 7, 799 (1970).Google Scholar
  91. 88.
    U. Lüpke and F. Seela, Chem. Ber. 112, 3526 (1979).Google Scholar
  92. 89.
    L. B. Townsend, R. L. Tolman, R. K. Robins, and G. H. Milne, J. Heterocycl. Chem. 13, 1363 (1976).Google Scholar
  93. 90.
    F. Seela and H. Steker, Liebigs Ann. Chem. 1983, 1576.Google Scholar
  94. 91.
    B. A. Otter, S. S. Saluja, and J. J. Fox, J. Org. Chem. 37, 2858 (1972).Google Scholar
  95. 92.
    J. J. Fox, B. A. Otter, J. A. Rabi, and R. S. Klein, J. Heterocycl. Chem. 11, S-I (1974).Google Scholar
  96. 93.
    E. DeClercq, J. Descamps, J. Balzarini, J. Giziewicz, P. J. Barr, and M. J. Robins, J. Med. Chem. 26, 661 (1983).Google Scholar
  97. 94.
    M. J. Robins and P. J. Barr, J. Org. Chem. 48, 1854 (1983).Google Scholar
  98. 95.
    H. Griengl, M. Bodenteich, W. Hayden, E. Wanek, W. Streicher, P. Stütz, H. Bachmayer, I. Ghazzouli, and B. Rosenwirth, J. Med. Chem. 28, 1679 (1985).PubMedGoogle Scholar
  99. 96.
    J. Okada, K. Nakano, and H. Miyake, Chem. Pharm. Bull. 31, 3074 (1983).PubMedGoogle Scholar
  100. 97.
    V. D. Patil, D. S. Wise, and L. B. Townsend, J. Chem. Soc. Perkin Trans. 1, 1853 (1980).Google Scholar
  101. 98.
    V. D. Patil, D. S. Wise, L. L. Wotring, L. C. Bloomer, and L. B. Townsend, J. Med. Chem. 28, 423 (1985).PubMedGoogle Scholar
  102. 99.
    H. S. Forrest, D. Hatfield, and J. M. Lagowski, J. Chem. Soc. (London) 1961, 963.Google Scholar
  103. 100.
    R. Lohrmann, J. M. Lagowski, and H. S. Forrest, J. Chem. Soc. (London) 1964, 451.Google Scholar
  104. 101.
    V. D. Patil, D. S. Wise, and L. B. Townsend, 7. Heterocycl. Chem. 10, 277 (1973).Google Scholar
  105. 102.
    V. D. Padl, D. S. Wise, L. B. Townsend, and A. Bloch, J. Med. Chem. 17, 1282 (1974).Google Scholar
  106. 103.
    K. Ikeda, T. Sumi, K. Yokoi, and Y. Mizuno, Chem. Pharm. Bull. 21, 1327 (1973).Google Scholar
  107. 104.
    K. Langfeld, Ber. Dtsch. Chem. Ges. 43, 1857 (1910)Google Scholar
  108. G. Burkhardt, M. P. Klein, and M. Calvin, J. Am. Chem. Soc. 87, 591 (1965).Google Scholar
  109. 105.
    Y. Kanaoka, O. Yonemitsu, and Y. Ban, Chem. Pharm. Bull. 12, 773 (1964).PubMedGoogle Scholar
  110. 106.
    C. L. Schmidt, W. J. Rusho, and L. B. Townsend, Chem. Commun. 1971, 1515.Google Scholar
  111. 107.
    C. L. Schmidt and L. B. Townsend, J. Org. Chem. 40, 2476 (1975).PubMedGoogle Scholar
  112. 108.
    I. L. Doerr, J. F. Codington, and J. J. Fox, J. Med. Chem. 10, 247 (1967).PubMedGoogle Scholar
  113. 109.
    V. P. Chernetskii and I. V. Alekseeva, Chem. Heterocycl. Compd. 3, 861 (1967).Google Scholar
  114. 110.
    G. Ritzmann and W. Pfleiderer, Chem. Ber. 106, 1401 (1973).Google Scholar
  115. 111.
    Y. Mizuno, Y. Watanabe, and K. Ikeda, Chem. Pharm. Bull. 22, 1198 (1974).PubMedGoogle Scholar
  116. 112.
    I. M. Goldman, J. Org. Chem. 34, 3285 (1969).PubMedGoogle Scholar
  117. 113.
    F. W. Lichtenthaler and E. Cuny, Chem. Ber. 114, 1610 (1981)Google Scholar
  118. 114.
    H. W. Hamilton and J. A. Bristol, J. Med. Chem. 26, 1601 (1983).PubMedGoogle Scholar
  119. 115.
    S. M. Jain, A. Kumar, B. Purnima, K. K. Anand, A. K. Saxena, and C. K. Atal, Indian J. Chem. 27B, 390 (1988).Google Scholar
  120. 116.
    T. A. Krenitsky, G. E. Elion, R. A. Strelitz, and G. H. Hitchings, J. Biol. Chem. 242, 2675 (1967).PubMedGoogle Scholar
  121. 117.
    W. J. M. Tax, J. H. Veerkamp, F. J. M. Trijbels, and E. D. A. M. Schretlen, Biochem. Phamacol. 25, 2025 (1976).Google Scholar
  122. 118.
    J. J. Fox and D. van Praag, J. Org. Chem. 26, 526 (1961).Google Scholar
  123. 119.
    T. I. Kalman and D. Goldman, Biochem. Biophys. Res. Commun. 102, 682 (1981).PubMedGoogle Scholar
  124. 120.
    D. E. Bergstrom, H. Inou, and P. A. Reddy, J. Org. Chem. 47, 2174 (1982).Google Scholar
  125. 121.
    F. J. Dinan, J. Chodkowski, J. P. Barren, D. M. Robinson, D. V. Reinhardt, and T. J. Bardos, J. Org. Chem. 47, 1769 (1982).Google Scholar
  126. 122.
    E. P. Studentsov, T. A. Chumak, E. G. Sochilin, A. G. Zmyvalova, and V. V. Shashkina, USSR SU 534 452, 5 Nov. 1976; Chem. Abstr. 86, 140–417 (1976).Google Scholar
  127. 123.
    G. D. Davis, R. K. Robins, and C. C. Cheng, J. Org. Chem. 26, 5256 (1961).Google Scholar
  128. 124.
    S. Y. Mel’nik, A. A. Bakhmedova, Y. Y. Volodin, M. N. Preobrazkcnskaya, A. I. Chernyshev, S. E. Esipov, and S. M. Navashin, Bioorg. Khim. 7, 1723 (1981).Google Scholar
  129. 125.
    H. Ogura, H. Takahashi, and K. Ohokubo,. Nucleosides.Nucleotides 1, 147 (1982).Google Scholar
  130. 126.
    P. D. Cook, P. Dea, and R. K. Robins, J. Heterocycl. Chem. 15, 1 (1978).Google Scholar
  131. 127.
    J. A. Carbon, J. Org. Chem. 25, 579 (1960).Google Scholar
  132. 128.
    R. P. Gagnier, M. J. Halat, and B. A. Otter, J. Heterocycl. Chem. 21, 481 (1984).Google Scholar
  133. 129.
    P. Fernandez-Resa and M. Stud, J. Heterocycl. Chem. 19, 305 (1982).Google Scholar
  134. 130.
    B. Azmy, P. Fernandez-Resa, P. Goya, R. Nieves, C. Ochoa, M. Stud, and M. L. Jimeno, Nucleosides Nucleotides 3, 325 (1984).Google Scholar
  135. 131.
    N. K. Kochetkov, V. N. Shibaev, and A. A. Kost, Tetrahedron Lett. 1971, 1993.Google Scholar
  136. 132.
    J. A. Secrist, J. R. Barrio, and N. J. Leonard, Science 175, 646 (1972).PubMedGoogle Scholar
  137. 133.
    J. R. Barrio, J. A. Secrist, and N. J. Leonard, Biochem. Biophys. Res. Commun. 46, 597 (1972).PubMedGoogle Scholar
  138. 134.
    B. Janik, R. G. Sommer, M. P. Kotick, D. P. Wilson, and R. J. Erickson, Physiol. Chem. Phys. 5, 27 (1973).PubMedGoogle Scholar
  139. 135.
    D. B. Ludlum, J. R. Metha, R. F. Steinek, and J. DeWitt, Biophys., Chem. 7, 339 (1978).Google Scholar
  140. 136.
    J. R. Barrio, P. D. Sattsangi, B. A. Gruber, L. G. Dammann, and N. J. Leonard, J. Am. Chem. Soc. 98, 7408 (1976).PubMedGoogle Scholar
  141. 137.
    A. H J. Wang, J. R. Barrio, and I. C. Paul, J. Am. Chem. Soc. 98, 7401 (1976).PubMedGoogle Scholar
  142. 138.
    W. Krzyzosiak, M. Jaskolski, H. Sierzputowska-Gracz, and M. Wiewiorowski, Nucleic Acids Res. 10, 2741 (1982).PubMedGoogle Scholar
  143. 139.
    K. H. Schram, Y. Taniguchi, and J. A. McCloskey, J. Chromatogr. 155, 355 (1978).Google Scholar
  144. 140.
    W. J. Krzyzosiak, J. Biernat, J. Ciesiolka, P. Gornicki, and M. Wiewiorowski, Pol. J. Chem. 53, 243 (1979).Google Scholar
  145. 141.
    G. L. Tolman, J. R. Barrio, and N. J. Leonard, Biochemistry 13, 4869 (1974).PubMedGoogle Scholar
  146. 142.
    J. C. Greenfield, N. J. Leonard, and R. I. Gumport, Biochemistry 14, 698 (1975).PubMedGoogle Scholar
  147. 143.
    N. K. Kochetkov, V. N. Shibaev, A. A. Kost, A. P. Razjivin, and A. Y. Borisov, Nucleic Acids Res. 3, 1341 (1976).PubMedGoogle Scholar
  148. 144.
    W.. Krzyzosiak, J. Biernat, J. Ciesiolka, P. Gornicki, and M. Wiewiorowski, Pol. J. Chem. 57, 779 (1983).Google Scholar
  149. 145.
    L. Kozerski, H. Sierzputowska-Gracz, W. Krzyzosiak, M. Bratek-Wiewiorowska, M. Jaskolski, and M. Wiewiorowski, Nucleic Acids Res. 12, 2205 (1984).PubMedGoogle Scholar
  150. 146.
    M. Ariatti and P. A. Jones, Biochem. Int. 15, 1097 (1987).PubMedGoogle Scholar
  151. 147.
    E. Zbiral and E. Hugl, Tetrahedron Lett. 1972, 439.Google Scholar
  152. 148.
    E. Hugl, G. Schulz, and E. Zbiral, Liebigs Ann. Chem. 1973, 278.Google Scholar
  153. 149.
    C. Ivanesics and E. Zbiral, Monatsh. Chem. 106, 417 (1975).Google Scholar
  154. 150.
    M. J. Murphy, E. Goldmann, and D. B. Ludlum, Biochim. Biophys. Acta 475, 446 (1977).PubMedGoogle Scholar
  155. 151.
    C. T. Gombar, W. P. Tong, and D. B. Ludlum, Biochem. Pharmacol. 29, 2639 (1980).PubMedGoogle Scholar
  156. 152.
    K. Bergmann, Arch. Toxicol. 49, 117 (1982).Google Scholar
  157. 153.
    L. de Napoli, L. Mayol, S. Bartolucci, G. Picciali, M. Rossi, and C. Santacroce, J. Heterocycl. Chem. 25, 1039 (1988).Google Scholar
  158. 154.
    N. Leonard and K. A. Cruickshank, J. Org. Chem. 50, 2480 (1985).Google Scholar
  159. 155.
    B. Bhat, K. A. Cruickshank, and N. J. Leonard, J. Org. Chem. 54, 2030 (1989).Google Scholar
  160. 156.
    V. Nair and R. J. Offerman, J. Org. Chem. 50, 5627 (1985).Google Scholar
  161. 157.
    P. Dea, G. R. Revankar, R. L. Tolman, R. K. Robins, and M. P. Schweizer, J. Org. Chem. 39, 3226 (1974).PubMedGoogle Scholar
  162. 158.
    M. W. Winkley, G. F. Judd, and R. K. Robins, J. Heterocycl. Chem. 8, 237 (1971).Google Scholar
  163. 159.
    J. L. Barascut, C. Oilier de Marichard, and J. L. Imbach, J. Carbohydr. Nucleosides Nucleotides 3, 281 (1976).Google Scholar
  164. 160.
    J. L. Barascut, C. 011ier de Marichard, and J. L. Imbach, J. Carbohydr. Nucleosides Nucleotides 5, 149 (1978).Google Scholar
  165. 161.
    G. R. Revankar, R. K. Robins, and R. L. Tolman, J. Org. Chem. 39, 1256 (1974).PubMedGoogle Scholar
  166. 162.
    G. Wagner, G. Valz, B. Dietzsch, and G. Fischer, Pharmacie 30, 134 (1975).Google Scholar
  167. 163.
    J. L. Barascut and J. L. Imbach, Bull. Soc. Chim. Fr. 1975, 2561.Google Scholar
  168. 164.
    M. Maeda and Y. Kawazoe, Chem. Pharm. Bull. 23, 844 (1975).PubMedGoogle Scholar
  169. 165.
    H. Hayatsu, A. Kitajo, K. Sugihara, N. Nitta, and K. Negishi, Nucleic Acids Res. Spec. Publ. No. 5, 315 (1978).Google Scholar
  170. 166.
    L. De Napoli, L. Mayol, G. Picciali, M. Rossi, and C. Santacroce, J. Heterocycl. Chem. 23, 1401 (1986).Google Scholar
  171. 167.
    A. Matsuda, K. Obi, and T. Miyasaka, Chem. Pharm. Bull. 33, 2575 (1985).Google Scholar
  172. 168.
    E. J. Prisbe, J. P. H. Verheyden, and J. G. Moffatt, J. Org. Chem. 43, 4774 (1978).Google Scholar
  173. 169.
    Y. Furukawa, O. Miyashita, and M. Honjo, Chem. Pharm. Bull. 22, 2552 (1974).Google Scholar
  174. 170.
    R. S. Sodum and R. Shapiro, Bioorg. Chem. 16, 272 (1988).Google Scholar
  175. 171.
    M. Olomucki, J. Y. LeGall, P. Roques, F. Blois, and S. Colinart, Nucleosides Nucleotides 4, 161 (1985).Google Scholar
  176. 172.
    P. Roques and M. Olomucki, Eur. J. Biochem. 167, 103 (1987).PubMedGoogle Scholar
  177. 173.
    V. Nair, G. A. Turner, and R. J. Offerman, J. Am. Chem. Soc. 106, 3370 (1984).Google Scholar
  178. 174.
    R. S. Hosmane and N. J. Leonard, J. Org. Chem. 46, 1457 (1981).Google Scholar
  179. 175.
    S. Kumar and N. J. Leonard, J. Org. Chem. 53, 3959 (1988).Google Scholar
  180. 176.
    V. S. Volkov, A. M. Poverennyi, and E. D. Sverdiov, Mol. Biol. (USSR) 17, 1318 (1983).Google Scholar
  181. 177.
    H. S. Forrest, R. Hull, H. J. Rodda, and A. R. Todd, J. Chem. Soc. (London) 1951, 3.Google Scholar
  182. 178.
    G. W. Kenner, C. W. Taylor, and A. R. Todd, J. Chem. Soc. (London) 1949, 1620.Google Scholar
  183. 179.
    W. Pfleiderer and R. Lohrmann, Chem. Ber. 95, 738 (1962).Google Scholar
  184. 180.
    W. Pfleiderer and F. Reisser, Chem. Ber. 95, 1621 (1962).Google Scholar
  185. 181.
    W. Pfleiderer and F. Reisser, Chem. Ber. 99, 536 (1966).Google Scholar
  186. 182.
    W. Pfleiderer and D. Söll, J. Heterocycl. Chem. 1, 23 (1964).Google Scholar
  187. 183.
    R. Lohrmann and H. S. Forrest, J. Chem. Soc. (London) 1964, 460.Google Scholar
  188. 184.
    W. Pfleiderer and E. Bühler, Chem. Ber. 99, 3022 (1966).Google Scholar
  189. 185.
    H. Rokos and W. Pfleiderer, Chem. Ber. 104, 748 (1971).Google Scholar
  190. 186.
    H. Rokos and W. Pfleiderer, Chem. Ber. 104, 770 (1971).Google Scholar
  191. 187.
    W. Pfleiderer, D. Autenrieth, and M. Schranner, Chem. Ber. 106, 317 (1973).PubMedGoogle Scholar
  192. 188.
    H. G. Fletcher, Trans. N.Y. Acad. Sci. Ser. H 30, 649 (1968).Google Scholar
  193. 189.
    H. Schmid, M. Schranner, and W. Pfleiderer, Chem. Ber. 106, 1952 (1973).Google Scholar
  194. 190.
    T. Itoh and W. Pfleiderer, Chem. Ber. 109, 3228 (1976).Google Scholar
  195. 191.
    M. Ott and W. Pfleiderer, Chem. Ber. 107, 339 (1974).Google Scholar
  196. 192.
    R. Harris and W. Pfleiderer, Liebigs Ann. Chem. 1981, 1457.Google Scholar
  197. 193.
    G. Ritzmann and W. Pfleiderer, Chem. Ber. 106, 1401 (1973).Google Scholar
  198. 194.
    N. A. Al-Masoudi and W. Pfleiderer, Nucleosides Nucleotides 8, 1485 (1989).Google Scholar
  199. 195.
    N. A. Al-Masoudi and W. Pfleiderer, Pteridines 2, 9 (1990).Google Scholar
  200. 196.
    K. Harzer and W. Pfleiderer, Heir. Chim. Acta 56, 1225 (1973).Google Scholar
  201. 197.
    G. Ritzmann, K. lenaga, and W. Pfleiderer, Liebigs Ann. Chem., 1977, 1217.Google Scholar
  202. 198.
    H. Vorbrüggen and K. Krolikiewicz, Angew. Chem. 87, 417 (1975).Google Scholar
  203. 199.
    H. Vorbrüggen and K. Krolikiewicz, Liebigs Ann. Chem. 1976, 745.Google Scholar
  204. 200.
    H. Rosemeyer, G. Toth, and F. Seela, Nucleosides Nucleotides 8, 587 (1989).Google Scholar
  205. 201.
    X. Cao, W. Pfleiderer, H. Rosemeyer, F. Seela, W. Bannwarth, and P. Schönholzer, Heir. Chim. Acta 75, 1267 (1992).Google Scholar
  206. 202.
    W. Pfleiderer, G. Ritzmann, K. Harzer, and J. C. Jochims, Chem. Ber. 106, 2982 (1973).Google Scholar
  207. 203.
    J. C. Jochims, W. Pfleiderer, K. Kobayashi, G. Ritzmann, and W. Hutzenlaub, Chem. Ber. 106, 2975 (1973).Google Scholar
  208. 204.
    I. Southon and W. Pfleiderer, Chem. Ber. 111, 2571 (1978).Google Scholar
  209. 205.
    H. Vorbrüggen and P. Strehlke, Chem. Ber. 106, 3039 (1973).Google Scholar
  210. 206.
    K. Eistetter and W. Pfleiderer, Chem. Ber. 109, 3208 (1976).Google Scholar
  211. 207.
    W. Hutzenlaub, K. Kobayashi, and W. Pfleiderer, Chem. Ber. 109, 3217 (1976).Google Scholar
  212. 208.
    A. Hampton and A. W. Nichols, Biochemistry 5, 2076 (1966).PubMedGoogle Scholar
  213. 209.
    H. Lutz and W. Pfleiderer, Carbohydr. Res. 130, 179 (1984).Google Scholar
  214. 210.
    J. J. Fox and J. Wempen, Adv. Carbohydr. Chem. 14, 283 (1959).PubMedGoogle Scholar
  215. 211.
    K. Goodman, in Basic Principles in Nucleic Acid Chemistry ( P.O.P. Ts’o, ed.), 170, Academic Press, New York (1974).Google Scholar
  216. 212.
    M. Ikehara, Acc. Chem. Res. 2, 47 (1969).Google Scholar
  217. 213.
    K. Kobayashi and W. Pfleiderer, Chem. Ber. 109, 3159 (1976).Google Scholar
  218. 214.
    K. Kobayashi and W. Pfleiderer, Chem. Ber. 109, 3175 (1976).Google Scholar
  219. 215.
    V. J. Ram, W. R. Knappe, and W. Pfleiderer, Liebigs Ann. Chem. 1982 762.Google Scholar
  220. 216.
    K. Kobayashi and W. Pfleiderer, Chem. Ber. 109, 3194 (1976).Google Scholar
  221. 217.
    K. Kobayashi and W. Pfleiderer, Chem. Ber. 109, 3184 (1976).Google Scholar
  222. 218.
    G. Ritzmann, L. Kiriasis, and W. Pfleiderer, Chem. Ber. 113, 1524 (1980).Google Scholar
  223. 219.
    G. Ritzmann, K. Ienaga, L. Kiriasis, and W. Pfleiderer, Chem. Ber. 113, 1535 (1980).Google Scholar
  224. 220.
    P. Goya and W. Pfleiderer, Chem. Ber. 114, 699 (1981).Google Scholar
  225. 221.
    P. Goya and W. Pfleiderer, Chem. Ber. 114, 707 (1981).Google Scholar
  226. 222.
    L. Kiriasis and W. Pfleiderer, Nucleosides Nucleotides 8, 1345 (1989).Google Scholar
  227. 223.
    K. Eistetter and W. Pfleiderer, Chem. Ber. 107, 575 (1974).Google Scholar
  228. 224.
    M. Yoshikawa, T. Kato, and T. Takenishi, Tetrahedron Lett. 1967, 5065; Bull. Chem. Soc. Jpn. 42, 3505 (1969).Google Scholar
  229. 225.
    H. Rokos and G. Harzer, in: Chemistry and Biology of Pteridines (W. Pfleiderer, ed.), p. 795, de Gruyter, Berlin (1975).Google Scholar
  230. 226.
    M. Hattori and W. Pfleiderer, Liebigs Ann. Chem. 1978, 1780.Google Scholar
  231. 227.
    M. Hattori and W. Pfleiderer, Liebigs Ann. Chem. 1978, 1788.Google Scholar
  232. 228.
    D. E. Hoard and D. G. Ott, J. Am. Chem. Soc. 87, 1785 (1965).PubMedGoogle Scholar
  233. 229.
    T. Ueda and I. Kawai, Chem. Pharm. Bull. 18, 2303 (1970).Google Scholar
  234. 230.
    R. Charubala and W. Pfleiderer, Helu. Chim. Acta 62, 1171 (1979).Google Scholar
  235. 231.
    R. Charubala and W. Pfleiderer, Hela. Chim. Acta 62, 1179 (1979).Google Scholar
  236. 232.
    W. Bannwarth and W. Pfleiderer, Liebigs Ann. Chem. 1980, 50.Google Scholar
  237. 233.
    R. Charubala, W. Bannwarth, and W. Pfleiderer, Liebigs Ann. Chem. 1980, 65.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Wolfgang Pfleiderer
    • 1
  1. 1.Faculty of ChemistryUniversity of KonstanzKonstanzGermany

Personalised recommendations