Advertisement

The Synthesis, Reactions, and Properties of the 2′(3′)-O-Aminoacyl and Peptidyl Nucleosides and Nucleotides

  • Stanislav Chladek

Abstract

The main impetus for the studies of the chemistry of the title compounds stems from the fact that the compounds from the aminoacyl transfer ribonucleic acid (aa-tRNA; see Section 11 for abbreviations used in this chapter), the key intermediate in the biosynthesis of proteins. In 1957 it was discovered that, during intermediate steps of protein synthesis, amino acids are bound to tRNA.(1) It was subsequently determined that the amino acids are linked by an ester bond to the 3′-terminal adenosine of the ubiquitous C-C-A sequence of tRNA(2-4) (Scheme 1). This was clearly indicated by evidence that 2′(3′)-0-leucyladenosine was produced by the ribonuclease digestion of Leu-tRNA.(2) Puromycin (2), a naturally occurring antibiotic produced by Streptomyces alboniger, is structurally similar to the 3′-0-aminoacyl terminus of aa-tRNA, with the exception that an aminoacyl amido bond replaces the aminoacyl ester bond.

Keywords

Title Compound Protein Biosynthesis Active Ester Phosphodiester Linkage Puromycin Amino Nucleoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. B. Hoagland, P. C. Zamecnik, and M. L. Stephenson, Biochim. Biophys. Acta 24, 215 (1957).PubMedGoogle Scholar
  2. 2.
    H. G. Zachau, G. Acs, and F. Lipmann, Proc. Natl. Acad. Sci. USA 44, 885 (1958).PubMedGoogle Scholar
  3. 3.
    I. L. Hecht, M. L. Stephenson, and P. C. Zamecnik, Proc. Natl. Acad. Sci. USA 45, 505 (1959).PubMedGoogle Scholar
  4. 4.
    J. Preiss, P. Berg, E. J. Ofengand, F. L. Bergmann, and M. Dieckmann, Proc. Natl. Acad. Sci. USA 45, 319 (1959).PubMedGoogle Scholar
  5. 5.
    M. B. Yarmolinsky and G. L. de la Haba, Proc. Natl. Acad. Sci. USA 45, 1721 (1959).Google Scholar
  6. 6.
    K. A. Marcker and F. Sanger, J. Mol. Biol. 8, 835 (1964).Google Scholar
  7. 7.
    M. S., Bretscher, j. Mol. Biol. 7, 446 (1963).Google Scholar
  8. 8.
    F. Cuzin, N. Kretscher, O. Greenberg, R. Hurwitz, and F. Chapeville, Proc. Natl. Acad. Sci. USA 58, 2079 (1967).PubMedGoogle Scholar
  9. 9.
    R. B. Loftfield, Prog. Nucleic Acids Res. Mol. Biol. 12, 87 (1972).Google Scholar
  10. 10.
    M. B.Hoagland, in The Nucleic Acids (J. Chargaff and J. B. Davidson, eds.), Vol. III, p. 349, Academic Press, New York (1960).Google Scholar
  11. 11.
    M. Sprinzl and F. Cramer, Prog. Nucleic Acids Res. Mol. Biol. 22, 1 (1979).Google Scholar
  12. 12.
    S. M. Hecht, Acc. Chem. Res. 10, 239 (1977).Google Scholar
  13. 13.
    H. G. Zachau and W. Karau, Chem. Ber. 93, 1830 (1960).Google Scholar
  14. 14.
    C. S. Mc Laughlin and V. M. Ingram, Biochemistry 4, 1992 (1965).Google Scholar
  15. 15.
    D. Hentzen, P. Mandel, and O. P. Garel, Biochim. Biophys. Acta 281, 2281 (1972).Google Scholar
  16. 16.
    B. E. Griffin, M. Jarman, C. B. Reese, J. E. Sulston, and D. R. Trentham, Biochem (1966).Google Scholar
  17. 17.
    M. Sprizl and F. Cramer, Nature New Biol. 245, 3 (1973).Google Scholar
  18. 18.
    F. Schuber and M. Pinch, Biochemie 56, 383 (1974).Google Scholar
  19. 19.
    S. Chladek and M. Sprizl, Angew. Chem. Int. Ed. Engl. 24, 371 (1985).Google Scholar
  20. 20.
    H. Feldman and H. G. Zachau, Biochem. Biophys. Res. Commun. 15, 13 (1964).Google Scholar
  21. 21.
    M. Taji, S. Yohoyama, and T. Miyazawa, Biochemistry, 22, 3220 (1983).Google Scholar
  22. 22.
    J. Forchammer and J. Lindhal, Mol. Biol. 55, 563 (1975).Google Scholar
  23. 23.
    R. Wolfenden, D. H. Rammler, and F. Lipmann, Biochemistry 3, 329 (1964).PubMedGoogle Scholar
  24. 24.
    L. H. Schulman and J. Abelson, Science 240, 1591 (1988).PubMedGoogle Scholar
  25. 25.
    T. Wieland, H. Merz, and G. Pfleiderer, Chem. Ber. 93, 1816 (1960).Google Scholar
  26. 26.
    H. G. Zachau, Chem. Ber. 93, 1822 (1960).Google Scholar
  27. 27.
    T. Wieland and G. Pfleiderer, Adv. Enzymol. 19, 235 (1957).Google Scholar
  28. 28.
    T. Wieland, F. Jaenicke, H. Merz, and M. Ossorio, Ann. Chem. 613, 95 (1958).Google Scholar
  29. 29.
    Z. A. Shabarova, N. I. Sokolova, and M. A. Prokof ev, Dokl. Akad. Nauk SSSR 128, 8311 (1959).Google Scholar
  30. 30.
    E. J. Dreiman, V. A. Dmitrieva, C. G. Kamzolova, Z. A. Shabarova, and M. A. Prokofev, Zh. Obshch. Khim. 31, 3899 (1961).Google Scholar
  31. 31.
    D. H. Rammler and H. G. Khorana, J. Am. Chem. Soc. 85, 1997 (1963).Google Scholar
  32. 32.
    Z. A. Shabarova, V. D. Smirnof, and M. A. Prokofev, Biochimia 29, 502 (1964).Google Scholar
  33. 33.
    J.-P. Waller, T. Erdos, F. Lemoine, S. Guttmann, and E. Sandrin, Biochim. Biophys. Acta 119, 566 (1966).PubMedGoogle Scholar
  34. 34.
    S. Chladek and P. Bhuta, Biochim. Biophys. Acta 696, 212 (1982).PubMedGoogle Scholar
  35. 35.
    A. Bhuta, K. Quiggle, T. Ott, D. Ringer, and S. Chladek, Biochemistry 20, 8 (1981).PubMedGoogle Scholar
  36. 36.
    J. Zemlicka, S. Chladek, Z. Haladova, and I. Rychlik, Collect. Czech. Chem. Commun. 39, 3755 (1969).Google Scholar
  37. 37.
    J. Zemlicka, S. Chladek, D. Ringer, and K. Quiggle, Biochemistry 14, 5239 (1975).Google Scholar
  38. 38.
    S. Chladek, D. Ringer, and E. M. Abraham, Nucleic Acids Res. 3, 1215 (1976).PubMedGoogle Scholar
  39. 39.
    S. Chladek, P. Pulkrabek, J. Sonnenbichler, J. Zemlicka, and I. Rychlik, Collect. Czech. Chem. Commun. 35, 2296 (1969).Google Scholar
  40. 40.
    B. P. Gottikh, A. A. Krajevsky, P. P. Purygin, T. L. Tsilevich, Z. S. Belova, and L. N. Rudzite, Izv. Akad. Nauk SSSR Ser. Khim. 11, 2571 (1967).Google Scholar
  41. 41.
    M. J. Robins, R. A. Jones, and M. Mac Coss, Biochemistry 13, 553 (1974).PubMedGoogle Scholar
  42. 42.
    S. Chladek, D. Ringer, and K. Quiggle, Biochemistry 13, 2727 (1974).PubMedGoogle Scholar
  43. 43.
    E. K. Ryu, K. Quiggle, and S. Chladek, J. Carbohydr. Nucleosides Nucleotides 4, 387 (1977).Google Scholar
  44. 44.
    K. Quiggle, G. Kumar, T. W. Ott, E. K. Ryu, and S. Chladek, Biochemistry 20, 3480 (1981).PubMedGoogle Scholar
  45. 45.
    V. A. Pozdnyakov, Y. V. Mitin, M. K. Kukhanova, L. V. Nikolaeva, A. A. Krayevsky, and B. P. Gottikh, FEBS Lett. 24, 177 (1972).PubMedGoogle Scholar
  46. 46.
    M. J. Robins, M. Mac Coss, and G. Ramani, Can. J. Chem. 52, 3803 (1974).Google Scholar
  47. 47.
    J. Zemlicka, Chem. Ind. 1964, 581.Google Scholar
  48. 48.
    C. B. Reese and M. Jarman, Chem. Ind. 1964, 1993.Google Scholar
  49. 49.
    C. B. Reese and J. E. Sulston, Proc. Chem. Soc. 1964, 216.Google Scholar
  50. 50.
    F. Eckstein and F. Cramer, Chem. Ber. 98, 995 (1965).Google Scholar
  51. 51.
    A. A. Krayevsky, M. K. Kukhanova, and B. P. Gottikh, Nucleic Acids. Res. 2, 2223 (1975).PubMedGoogle Scholar
  52. 52.
    S. V. Papovkina, S. G. Zovgorodnii, A. V. Azhaev, V. V. Kotusov, R. Y. Vigestone, L. S. Victorova, M. K. Kukhanova, A. A. Krayevsky, and B. P. Gottikh, Mol. Biol. (USSR) 12, 397 (1978).Google Scholar
  53. 53.
    P. Bhuta and J. Zemlicka, Biochim. Biophys. Acta 841, 145 (1985).PubMedGoogle Scholar
  54. 54.
    C. Li and J. Zemlicka, J. Org . Chem. 42, 706 (1977).Google Scholar
  55. 55.
    J. Zemlicka and S. Chladek, Tetrahedron Lett. 3057 (1965).Google Scholar
  56. 56.
    J. Zemlicka and S. Chladek, Collect. Czech. Chem. Commun. 31, 3775 (1966).Google Scholar
  57. 57.
    J. Zemlicka and S. Chladek, unpublished results.Google Scholar
  58. 58.
    J. Zemlicka and M. Murata, J. Org . Chem. 41, 3317 (1976).Google Scholar
  59. 59.
    W. H. Graham, Tetrahedron Lett. 2233 (1969).Google Scholar
  60. 60.
    P. C. Zamecnik, Biochem. J. 85, 257 (1962).PubMedGoogle Scholar
  61. 61.
    B. E. Griffin and C. B. Reese, Proc. Natl. Acad. Sci. USA 51, 440 (1964).PubMedGoogle Scholar
  62. 62.
    S. Chladek, D. Ringer, and J. Zemlicka, Biochemistry 12, 5135 (1973).PubMedGoogle Scholar
  63. 63.
    J. Sonnenbichler, H. Feldmann, and H. G. Zachau, Z. Physiol. Chem. 334, 283 (1964).Google Scholar
  64. 64.
    J. Sonnenbichler, H. Feldmann, and H. G. Zachau, Z. Physiol. Chem. 341, 249 (1965).Google Scholar
  65. 65.
    H. P. M. Fromogeot, B. E. Griffin, C. B. Reese, J. E. Sulston, and D. R. Trentham, Tetrahedron 22, 705 (1966).Google Scholar
  66. 66.
    S. Chladek and J. Zemlicka, J. Org . Chem. 39, 2187 (1974).Google Scholar
  67. 67.
    S. S. Tavale and H. M. Sobell, J. Mol. Biol. 48, 109 (1970).Google Scholar
  68. 68.
    S. Chladek, unpublished results.Google Scholar
  69. 69.
    B. P. Gottikh, A. A. Krayevsky, N. B. Tarussova, P. P. Purygin, and T. L. Tsilevich, Tetrahedron 26, 4419 (1970).PubMedGoogle Scholar
  70. 70.
    S. M. Hecht, B. L. Alford, Y. Kuroda, and S. Kitano, J. Biol. Chem. 253, 4517 (1978).Google Scholar
  71. 71.
    S. B. Weiss, H. G. Zachau, and F. Lipmann, Arch. Biochem. Biophys. 83, 101 (1959).PubMedGoogle Scholar
  72. 72.
    J. Zemlicka and S. Chladek, Collect. Czech. Chem. Commun. 33, 3293 (1968).Google Scholar
  73. 73.
    S. Chladek, J. Zemlicka, and F. Sorm, Biochem. Biophys. Res. Commun. 22, 554 (1966).PubMedGoogle Scholar
  74. 74.
    S. Chladek and J. Zemlicka, Collect. Czech. Chem. Commun. 33, 232 (1968).Google Scholar
  75. 75.
    S. Chladek and J. Zemlicka, Collect. Czech. Chem. Commun. 32, 1776 (1967).Google Scholar
  76. 76.
    G. Kumar, L. Celewicz, and S. Chladek, J. Org . Chem. 47, 634 (1982).Google Scholar
  77. 77.
    C. T. J. Wreesmann, A. Fidder, G. A. Vander Marel, and J. H. van Boom, Nucleic Acids Res. 11, 8389 (1983).PubMedGoogle Scholar
  78. 78.
    C. Scalfi-Happ, S. Ghag, E. Happ, and S. Chladek, Biochemistry 26, 4682 (1987).PubMedGoogle Scholar
  79. 79.
    J. F. B. Mercer and R. H. Symons, Eur. J. Biochem. 28, 38 (1972).PubMedGoogle Scholar
  80. 80.
    K. Quiggle, M. L. Wejrowski, and S. Chladek, Biochemistry 17, 94 (1978).PubMedGoogle Scholar
  81. 81.
    P. Bhuta and J. Zemlicka, Biochem. Biophys. Res. Commun. 83, 414 (1978).PubMedGoogle Scholar
  82. 82.
    J. Smrt and J. Jonak, Collect. Czech. Chem. Commun. 44, 3321 (1979).Google Scholar
  83. 83.
    G. Kumar and S. Chladek, Tetrahedron Lett. 22, 827 (1981).Google Scholar
  84. 84.
    J. H. van Boom and P. M. J. Burgers, Tetrahedron Lett. 17, 4875 (1976).Google Scholar
  85. 85.
    C. B. Reese, Tetrahedron 34, 3143 (1978).Google Scholar
  86. 86.
    C. Scalfi-Happ, E. Happ, and S. Chladek, J. Org . Chem. 52, 5327 (1985).Google Scholar
  87. 87.
    M. D. Hagen, C. Scalfi-Happ, E. Hopp, and S. Chladek, J. Org . Chem. 53, 5040 (1988).Google Scholar
  88. 88.
    C. B. Reese and L. Zard, Nucleic Acids. Res. 9, 4611 (1981).PubMedGoogle Scholar
  89. 89.
    S. S. Jones, C. B. Reese, S. Sibanda, and A. Ubasawa, Tetrahedron Lett. 22, 4755 (1981).Google Scholar
  90. 90.
    M. D. Hagen and S. Chladek, J. Org . Chem. 54, 3189 (1989).Google Scholar
  91. 91.
    A. Nyilas, A. Foldesi, and J. Chattopadhyaya, Nucleosides Nucleotides 8, 557 (1984).Google Scholar
  92. 92.
    T. G. Heckler, L.-H. Chang, Y. Zama, T. Naka, and S. M. Hecht, Tetrahedron 40, 87 (1984).Google Scholar
  93. 93.
    T. G. Heckler, L.-H. Chang, Y. Zama, T. Naka, M. S. Chorghade, and S. M. Hecht, Biochemistry 23, 1468 (1984).PubMedGoogle Scholar
  94. 94.
    A. T. Profy and D. A. Usher, J. Am. Chem. Soc. 106, 5030 (1984).Google Scholar
  95. 95.
    A. T. Profy, K.-M. Lo, and D. A. Usher, Nucleic Acids Res. 11, 1617 (1983).PubMedGoogle Scholar
  96. 96.
    G. Baldini, B. Martoglio, A. Schuderman, C. Zugliami, and T. Drummer, Biochemistry 27, 7951 (1988).PubMedGoogle Scholar
  97. 97.
    C. J. Noreu, S. J. Anthony-Cahill, M. C. Griffith, and P. G. Schultz, Science 244, 182 (1989).Google Scholar
  98. 98.
    T. L. Tsilevich, N. B. Tarusova, and B. P. Gottikh, Izv. Akad. Nauk SSSR Ser. Khim. 1916 (1975).Google Scholar
  99. 99.
    M. Ikehara, Y. Honda, and E. Ohtsuka,, J. Carbohydr. Nucleosides Nucleotides 4, 321 (1977).Google Scholar
  100. 100.
    C. Li, P. Bhuta, and J. Zemlicka, Biochemistry 17, 2537 (1978).PubMedGoogle Scholar
  101. 101.
    M. Bogdansky, Y. Kalusmer, and M. Ondetti, in: Peptide Synthesis ( G. A. Olah, ed.), pp. 138–148, Wiley, New York (1976).Google Scholar
  102. 102.
    K. Quiggle, G. Kumar, T. Ott, E. K. Ryu, and S. Chladek, Biochemistry 20, 3480 (1981).PubMedGoogle Scholar
  103. 103.
    S. Chladek and J. Zemlicka, Collect. Czech. Chem. Commun. 33, 4299 (1968).Google Scholar
  104. 104.
    S. Chladek and J. Zemlicka, Collect. Czech. Chem. Commun. 35, 89 (1970).Google Scholar
  105. 105.
    S. Chladek, J. Zemlicka, and V. Gut, Biochem. Biophys. Res. Commun. 35, 306 (1970).Google Scholar
  106. 106.
    V. Gut, S. Chladek, and J. Zemlicka, Collect. Czech. Chem. Commun. 35, 2398 (1970).Google Scholar
  107. 107.
    S. Chladek, J. Org . Chem. 37, 2863 (1972).Google Scholar
  108. 108.
    M. A. Kharshan, R. Y. Vigestane, S. V. Popovkina, M. K. Kukhavona, A. A. Krayevsky, and B. P. Gottikh, Biorg. Chem. 3, 494 (1977).Google Scholar
  109. 109.
    A. Alexandova and J. Smrt, Collect. Czech. Chem. Commun. 42, 1694 (1977).Google Scholar
  110. 110.
    J. Smrt and J. Jonak, Collect. Czech. Chem. Commun. 44, 3321 (1979).Google Scholar
  111. 111.
    N. B. Tarussova, T. L. Tsilevich, and B. P. Gottihk, Izv. Akad. Nauk SSSR Ser. Khim. 19, 135 (1975).Google Scholar
  112. 112.
    A. A. Krayevsky, L. S. Victorova, V. V. Kotusov, M. K. Kukhanova, A. D. Treboganov, N. B. Tarussova, and B. P. Gottikh, FEBS Lett. 62, 101 (1964).Google Scholar
  113. 113.
    R. J. Suhadolnik, in Nucleoside Antibiotics, Wiley, New York (1970).Google Scholar
  114. 114.
    B. R. Baker, J. P. Joseph, and J. H. Williams, J. Chem. Soc. 77, 1 (1955).Google Scholar
  115. 115.
    J. A. Montgomery and H. J. Thomas, Adv. Carbohydr. Chem. 17, 301 (1962).Google Scholar
  116. 116.
    D. Nathans and A. Neidle, Nature 197, 1076 (1963).PubMedGoogle Scholar
  117. 117.
    R. J. Harris, J. F. B. Mercer, D. C. Shingle, and R. H. Symons, Can. J. Biochem. 50, 918 (1972).Google Scholar
  118. 118.
    F. J. McEvoy, B. R. Baker, and M. J. Weiss, J. Am. Chem. Soc. 82, 209 (1960).Google Scholar
  119. 119.
    S. Chladek and G. Butke, J. Carbohydr. Nucleosides Nucleotides 7, 297 (1980).Google Scholar
  120. 120.
    S. Daluge and R. Vince, J. Med. Chem. 15, 171 (1972).Google Scholar
  121. 121.
    R. Vince and S. Daluge, J. Med. Chem. 20, 930 (1977).Google Scholar
  122. 122.
    T. Kato and J. Zemlicka, Tetrahedron Lett. 48, 4741 (1978).Google Scholar
  123. 123.
    A. J. Guarino and N. M. Kredich, Fed. Proc. 23, 371 (1979).Google Scholar
  124. 124.
    T. Komori, K. Sahane, H. Setoi, Y. Kawai, T. Teraji, M. Kohsaka, and H. Imamata, J. Antibiot. 38, 1182 (1985).Google Scholar
  125. 125.
    R. L. Hamill and M. M. Hoehn, 16th Annu. ICAAC Meet. Chicago Abstr. 60 (1976).Google Scholar
  126. 126.
    H. A. Kirst, D. E. Dorman, J. L. Occolowitz, E. F. Szymanski, and J. W. Paschal, 16th Annu. ICAAC Meet. Chicago Abstr. 61 (1976).Google Scholar
  127. 127.
    R. J. Suhadolnik, in Nucleosides as Biological Probes, Wiley, New York (1979).Google Scholar
  128. 128.
    J. Zemlicka and S. Chladek, Collect. Czech. Chem. Commun. 39, 1007 (1969).Google Scholar
  129. 129.
    P. Bhuta, H. L. Chung, J.-S. Hwang, and J. Zemlicka, J. Med. Chem. 33, 1299 (1980).Google Scholar
  130. 130.
    N. B. Tarussova, G. M. Yacovleva, L. S. Victorova, M. K. Kukhanova, and R. M. Khomutov, Bioorg. Khim. 7, 248 (1981).Google Scholar
  131. 131.
    N. B. Tarussova, G. M. Yacovleva, L. S. Victorova, M. K. Kukhanova, and R. M. Khomutov, FEBS Lett. 130, 85 (1981).PubMedGoogle Scholar
  132. 132.
    E. Herbert, C. J. Smith, and C. W. Wilson, J. Mol. Biol. 9, 376 (1964).Google Scholar
  133. 133.
    C. J. Smith, E. Herbert, and C. W. Wilson, Biochim. Biophys. Acta 87, 341 (1964).PubMedGoogle Scholar
  134. 134.
    T. Ishida and K. Miura, J. Mol. Biol. 11, 341 (1965).PubMedGoogle Scholar
  135. 135.
    M. Takamani, Proc. Natl. Acad. Sci. USA 52, 1271 (1964).Google Scholar
  136. 136.
    J. L. Lessard and S. Pestka, J. Biol. Chem. 247, 690 (1972).Google Scholar
  137. 137.
    R. E. Monro, J. Cerna, and K. A. Marcker, Proc. Natl. Acad. Sci. USA 61, 1042 (1968).PubMedGoogle Scholar
  138. 138.
    Z. Hussain and J. Ofengand, Biochem. Biophys. Res. Commun49, 1588 (1972).PubMedGoogle Scholar
  139. 138.
    J. Guesnet, G. Parlato, and A. Parmeggiani, Eur. J. Biochem 133 499 (1983).PubMedGoogle Scholar
  140. 140.
    R. Thiebe, K. Harbers, and H. G. Zachau, Eur. J. Biochem. 26, 144 (1972).PubMedGoogle Scholar
  141. 141.
    M. Krauskopf, C.-M., Chen, and J. Ofengand, J. Biol. Chem. 247, 842 (1972).PubMedGoogle Scholar
  142. 142.
    K. Takahashi, S. Ghag, and S. Chladek, Biochemistry 25, 8330 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Stanislav Chladek
    • 1
  1. 1.Michigan Cancer FoundationDetroitUSA

Personalised recommendations