Advertisement

The Synthesis and Reactions of Pyrrole, Pyrazole, Triazole, Indole, Indazole, and Benzotriazole Nucleosides and Nucleotides

  • Maria N. Preobrazhenskaya
  • Ilya A. Korbukh

Abstract

The nucleosides and nucleotides of pyrrole, pyrazole, triazole, and the corresponding benzoderivatives have been prepared as analogues of purine nucleosides, purine nucleotides, or their biological precursors. The size and geometry of azole nucleosides are similar to the biologically important imidazole nucleosides, while the indole, indazole, and benzotriazole derivatives are closer to those of the corresponding purine derivatives. However, the properties of these compounds, such as electronic density distribution in the heterocyclic moiety, the value and direction of dipole moments, ability to accommodate intermolecular interactions, and, finally, the reactivity of substituents (including the lability of the glycosidic bond) in these compounds, are very different. Indole, indazole, and benzotriazole nucleosides are unique analogues of purine nucleosides, since there are no nitrogen atoms in the “pyrimidine” ring.

Keywords

Purine Nucleoside Raney Nickel Trimethylsilyl Derivative Pyrimidine Nucleoside Nucleoside Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. A. Remers, in Indoles (W. J. Houlihan, ed.), Part I, pp. 3–212, Wiley—Interscience, New York (1972).Google Scholar
  2. 2.
    K. A. Watanabe, D. H. Hollenberg and J. J. Fox, J. Carbohydr. Nucleosides Nucleotides 1, 1 (1974).Google Scholar
  3. 3.
    E. Walton, F. W. Holly, and S. R. Jenkins, J. Org . Chem. 33, 192 (1968).Google Scholar
  4. 4.
    C. Chavis, F. Dumont, G. Gosselin, and J.-L. Imbach, Carbohydr. Res. 46, 43 (1976).Google Scholar
  5. 5.
    J. Jasinska, Zesz. Nauk. Wydz. Mat. Fiz. Chem. Uniw. Gdanski Chem. 1, 163 (1971); Chem. Abstr. 78, 97955 (1973).Google Scholar
  6. 6.
    A. V. Stetsenko and I. P. Kupchevskaya, Ukr. Khim. Zh. 38, 503 (1972); Chem. Abstr. 78, 4469 (1973).Google Scholar
  7. 7.
    M. Gallant, J. T. Link, S. J. Danishefsky, J. Org . Chem. 58, 343 (1993).Google Scholar
  8. 8.
    M. Cornia, G. Casiraghi, and L. Zetta, J. Org . Chem. 56, 5466 (1991).Google Scholar
  9. 9.
    T. H. Dinh. M.-R. Bayard, and J. Igolen, C.R. Acad. Sci. Ser. C 283, 227 (1976).Google Scholar
  10. 10.
    M. Bessodes, N. D. Xuong, and K. Antonakis, C.R. Acad. Sci. Ser.0 282, 1001 (1976).Google Scholar
  11. 11.
    M. Bessodes, K. Antonakis, and N. D. Xuong, J. Carbohydr. Nucleosides Nucleotides 4, 215 (1977).Google Scholar
  12. 12.
    M. N. Preobrazhenskaya, Y. A. Zhdanov, V. P. Shabunova, and N. N. Suvorov, Zh. Org . Khim. 9, 2624 (1973); Chem. Abstr. 80, 83503 (1974).Google Scholar
  13. 13.
    T. N. Sokolova, V. E. Shevchenko and M. N. Preobrazhenskaya, Carbohydr. Res. 83, 249 (1980).Google Scholar
  14. 14.
    T. N. Sokolova, I. V. Yarzeva, and M. N. Preobrazhenskaya, Carbohydr. Res. 93, 19 (1981).Google Scholar
  15. 15.
    T. Kaneko, H. Wong, K. T. Okamoto, and J. Clardy, Tetrahedron Lett. 26, 4015 (1985).Google Scholar
  16. 16.
    G. R. Revankar and R. K. Robins, Nucleosides Nucleotides 8, 709 (1989).Google Scholar
  17. 17.
    N. S. Girgis, H. B. Cottam, and R. K. Robins, J.Heterocycl. Chem. 25, 361 (1988).Google Scholar
  18. 18.
    P. Franchetti, G. Cristalli, M. Grifantini, E. Nasini, and S. Vittori, Nucleosides Nucleotides 8, 1143 (1989).Google Scholar
  19. 19.
    J. G. Buchanan, J. Stoddart, and R. Wightman, j. Chem. Soc. Chem. Commun. 1989, 823.Google Scholar
  20. 20.
    K. Ramasamy, R. K. Robins, and G. R. Revankar, Tetrahedron 42, 5869 (1986).Google Scholar
  21. 21.
    G. R. Revankar, K. Ramasamy, and R. K. Robins, Nucleosides Nucleotides 6, 261 (1987).Google Scholar
  22. 22.
    K. Ramasamy, R. K. Robins, and G. R. Revankar, Nucleosides Nucleotides 7, 385 (1988).Google Scholar
  23. 23.
    K. Ramasamy, R. K. Robins, and G. R. Revankar, J. Heterocycl. Chem. 24, 863 (1987).Google Scholar
  24. 24.
    F. Seela, H.-D. Winkler, J. Ott, Q-H. Tran-Thi, D. Hasselman, D. Frauzen, and N. Bussman, in Nucleosides, Nucleotides and Their Biological Applications ( J. L. Rideout, D. W. Henry, and L. M. Beacham, III eds.), pp. 181–208, Academic Press, New York (1983).Google Scholar
  25. 25.
    F. Seela, W. Bourgeois, and T. Jurgens, Nucleosides Nucleotides 8, 1089 (1989).Google Scholar
  26. 26.
    N. N. Suvorov and M. N. Preobrazhenskaya, Zh. Obshch. Khim. 30, 2434 (1960); Chem. Abstr. 55, 8383 (1961).Google Scholar
  27. 27.
    N. N. Suvorov and M. N. Preobrazhenskaya, Zh. Obshch. Khim. 31, 2839 (1961); Chem. Abstr. 56, 14386 (1962).Google Scholar
  28. 28.
    E. C. Kornfeld, E. J. Fornefeld, G. B. Kline, M. J. Mann, D. E. Morrison, R. G. Jones, and R. B. Woodward, J. Am. Chem. Soc. 78, 3087 (1956).Google Scholar
  29. 29.
    M. N. Preobrazhenskaya, Usp. Khim 36, 1760 (1967); Chem. Abstr. 68, 104846 (1968).Google Scholar
  30. 30.
    A. A. Magnin, K. G. R. Pachler, and A. M. Stephen, Tetrahedron 25, 4534 (1969).Google Scholar
  31. 31.
    A. A. Magnin and A. M. Stephen, Tetrahedron 26, 4019 (1970).Google Scholar
  32. 32.
    L. V. Ektova, V. N. Tolkachev, M. Z. Kornveits, and M. N. Preobrazhenskaya, Bioorg. Khim. 4, 1250 (1978); Chem. Abstr. 90, 23501 (1979).Google Scholar
  33. 33.
    T. D. Miniker, V. I. Mukhanov, N. D. Chkanikov, I. V. Yartseva, and M. N. Preobrazhenskaya, Carbohydr. Res. 64, 17 (1978).Google Scholar
  34. 34.
    V. N. Tolkachev and M. N. Preobrazhenskaya, Zh. Org . Khim. 11, 658 (1975); Chem. Abstr. 83, 43677 (1975).Google Scholar
  35. 35.
    A. A. Magnin, A. M. Stephen, and R. J. H. Davies, Tetrahedron 28, 3069 (1972).Google Scholar
  36. 36.
    M. N. Preobrazhenskaya, M. M. Vigdorchik, and N. N. Suvorov, Khim. Geterotsikl. Soedin Sb. 1: Azotsoderzhaschie Geterotsikly 1967, 35; Chem. Abstr. 70, 88181 (1969).Google Scholar
  37. 37.
    M. N. Preobrazhenskaya and N. N. Suvorov, Zh. Obshch, Khim 35, 893 (1965).Google Scholar
  38. 38.
    M. N. Preobrazhenskaya, M. M. Vigdorchik, and N. N. Suvorov, Biel, Akt. Soedin, Akad. Nauk. SSSR 1965, 60; Chem. Abstr. 64, 790 (1966).Google Scholar
  39. 39.
    I. V. Yartseva, L. V. Ektova, V. I. Sakharova, J. V. Dobrynin, N. P. Yavorskaya, T. G. Nikolaeva, Z. P. Sofina, and M. N. Preobrazhenskaya, Zh. Org . Khim. 13, 1743 (1977); Chem. Abstr. 88, 7227 (1978).Google Scholar
  40. 40.
    M. N. Preobrazhenskaya, V. I. Mukhanov, N. P. Kostyuchenko, and N. N. Suvorov, Zh. Org . Khim 9, 601 (1973); Chem. Abstr. 78, 136598 (1973).Google Scholar
  41. 41.
    M. N. Preobrazhenskaya and V. I. Mukhanov, J’. Carbohydr. Nucleosides Nucleotides 1, 469 (1974).Google Scholar
  42. 42.
    J. V. Dobrynin, T. G. Nikolaeva, V. I. Mukhanov, I. V. Yartseva, T. D. Miniker, L. V. Ektova, V. N. Tolkachev, N. D. Chkanikov, and M. N. Preobrazhenskaya, Khim. Farm. %h. 12 (5), 33 (1978).Google Scholar
  43. 43.
    V. I. Mukhanov, I. V. Yartseva, L. V. Ektova, N. D. Chkanikov, T. D. Miniker, and M. N. Preobrazhenskaya, Khim, Geterotsikl. Soedan 1979, 224.Google Scholar
  44. 44.
    J. V. Dobrynin, T. G. Nikolaeva, T. N. Sokolova, K. G. Zhirnova, V. I. Mukhanov, and M. N. Preobrazhenskaya, Khim Farm. Zh. 13 (10), 45 (1979).Google Scholar
  45. 45.
    M. N. Preobrazhenskaya, L. A. Savel’eva, and N. N. Suvorov, Khim. Geterotsikl. Soedin. 1967, 692; Chem. Abstr. 68, 78539 (1968).Google Scholar
  46. 46.
    V. I. Mukhanov, T. D. Miniker, and M. N. Preobrazhenskaya, Zh. Org . Khim. 13, 214 (1977); Chem. Abstr. 86, 171776 (1977).Google Scholar
  47. 47.
    V. Mukhanov, Y. P. Troyanov, and M. N. Preobrazhenskaya, Zh. Org . Khim 14, 2174 (1978); Chem. Abstr. 90, 121926 (1979).Google Scholar
  48. 48.
    V. I. Mukhanov, T. N. Sokolova, T. G. Nikolaeva, J. V. Dobrynin, and M. N. Preobrazhenskaya, Khim. Farm. Zh. 13 (6), 47 (1979).Google Scholar
  49. 49.
    M. N. Preobrazhenskaya, T. D. Miniker, V. S. Martynov, L. N. Jakhontov, N. P. Kostyuchenko, and D. M. Krasnokutskaya, %h. Org . Chim. 10, 745 (1974); Chem. Abstr. 81, 25898 (1974).Google Scholar
  50. 50.
    L. V. Ektova, T. D. Miniker, I. V. Yartseva, and M. N. Preobrazhenskaya, Khim Geterotsikl. Soedin. 1977, 1083; Chem. Abstr. 88, 7279 (1978).Google Scholar
  51. 51.
    V. S. Martynov, T. Y. Filipenko, and M. N. Preobrazhenskaya, Zh. Org . Khim. 10, 1117 (1974); Chem. Abstr. 81, 63916 (1974).Google Scholar
  52. 52.
    M. N. Preobrazhenskaya, M. M. Vigdorchik, and N. N. Suvorov, Tetrahedron, 23, 4653 (1967).PubMedGoogle Scholar
  53. 53.
    M. N. Preobrazhenskaya, M. M. Vigdorchik, and N. N. Suvorov, Khim. Prir. Soedin. 4, 128 (1968); Chem. Abstr. 69, 67659 (1968).Google Scholar
  54. 54.
    E. Walton and F. W. Holly (Merck and Co., Inc.) Patent Fr. 1, 520, 946 (Cl C 07d) 12 April 1968, U.S.; Chem. Abstr. 71, 70904 (1969).Google Scholar
  55. 55.
    M. N. Preobrazhenskaya, I. V. Yartseva, and L. V. Ektova, in Nucleic Acid Chemistry (L. B. Townsend and R. S. Tipson, eds.), Part II, pp. 721–723, Wiley, New York (1978).Google Scholar
  56. 56.
    E. Walton, F. W. Holly, and S. R. Jenkins, in Nucleic Acid Chemistry (L. B. Townsend and R. S. Tipson, eds.), Part II, pp. 713–719, Wiley, New York (1978).Google Scholar
  57. 57.
    V. I. Mukhanov, M. N. Preobrazhenskaya, N. P. Kostyuchenko, T. Y. Filipenko and N. N. Suvorov, Th. Org. Khim. 10, 587 (1974); Chem. Abstr. 81, 4186 (1974).Google Scholar
  58. 58.
    F. Seela and W. Bourgeois, Synthesis 945 (1990).Google Scholar
  59. 59.
    M. N. Preobrazhenskaya, T. D. Miniker, V. S. Martynov, L. N. Yakhontov, and D. M. Krasnokutskaya, Zh. Org . Khim. 10, 2449 (1974); Chem. Abstr., 82, 112218 (1975).Google Scholar
  60. 60.
    L. V. Ektova, V. N. Tolkachev, N. L. Radiukina, T. P. Ivanova, J. V. Dobrynin, and M. N. Preobrazhenskaya, Bioorg. Khim 5, 1369 (1979).Google Scholar
  61. 61.
    A. F. Bochkov, A. J. Khorlin, and N. K. Kochetkov, Tetrahedron 23, 693 (1967).Google Scholar
  62. 62.
    K. Heyns and W. Beilfuss, Chem. Ber. 106, 2693 (1973).Google Scholar
  63. 63.
    L. M. Jackson, in Advances in Organic Chemistry: Methods and Results (R. A. Raphael, E. C. Taylor, and H. Wynberg, eds.), Vol. II, Interscience, New York (1960).Google Scholar
  64. 64.
    Y. I. Vainstein, I. N. Palant, L. N. Yakhontov, D. M. Krasnokutskaya, and M. V. Rubtsov, Khim. Geterotsikl. Soedin 1969, 1106; Chem. Abstr. 72, 120884 (1970).Google Scholar
  65. L. I. Vereshchagin, S. P. Gainulina, S. A. Podskrebysheva, L. A. Gaivoronskii, L. L. Okhapkina, V. G. Vorob’eva, and V. P. Latyshev, % h. Org . Khim. 8 1129 (1972); Chem. Abstr. 77 100983 (1972).Google Scholar
  66. 66.
    V. A. Azimov, D. M. Krasnokutskaya, I. N. Palant, and L. N. Jakhontov, Khim. Geterotsikl. Soedin 1929, 375.Google Scholar
  67. 67.
    V. Tolkachev, S. Gelperina, N. Chkanikov, and M. N. Preobrazhenskaya, Bioorg. Khim. 13, 82 (1987).Google Scholar
  68. 68.
    M. Kawana and S. Emoto, Bull. Chem. Soc. jpn. 41, 2552 (1968).Google Scholar
  69. 69.
    M. Kawana and S. Emoto, Bull, Chem. Soc. jpn. 42, 3539 (1969).Google Scholar
  70. 70.
    M. Kawana, Chem. Lett. 1981, 1541.Google Scholar
  71. 71.
    M. N. Preobrazhenskaya, M. M. Vigdorchik, N. P. Kostuchenko, and Y. N. Sheinker, Dokl. Akad. Nauk. SSSR 185, 617 (1969); Chem. Abstr. 71, 30653 (1969).Google Scholar
  72. 72.
    R. J. Cushley, S. R. Lipsky, W. J. McMurrey, and J. J. Fox, Chem. Commun. 1968, 1611.Google Scholar
  73. 73.
    V. N. Tolckachev, M. Z. Kornveiz, K. F. Turchin, and M. N. Preobrazhenskaya, Zh. Org . Khim. 11, 1124 (1975); Chem. Abstr. 83, 97788 (1975).Google Scholar
  74. 74.
    J. C. Jochims, H. von Voitthenberg, and G. Wegner, Chem. Ber. 111, 1693 (1978).Google Scholar
  75. 75.
    J. A. Montgomery, Carbohydr. Res. 33, 184 (1974).Google Scholar
  76. 76.
    C. Tapiero and J. L. Imbach, in Nucleic Acid Chemistry (L. B. Townsend and R. S. Tipson, eds.), Part II, pp. 1055–1059, Wiley, New York (1978).Google Scholar
  77. 77.
    P. Nuhn and G. Wagner, Pharmazie 21, 261 (1966).Google Scholar
  78. 78.
    E. I. Zharova, T. G. Protasova, S. A. Khrustalev, M. N. Preobrazhenskaya, N. N. Suvorov, and M. O. Raushenbakh, Probl. Gematol. Pereliv. Krovi 10, 38 (1965); Chem. Abstr. 63, 10449 (1965).Google Scholar
  79. 79.
    M. N. Preobrazhenskaya, V. I. Mukhanov, L. D. Manzon, and N. N. Suvorov, Zh. Org . Khim. 8, 2600 (1972); Chem. Abstr. 78, 97926 (1972).Google Scholar
  80. 80.
    M. N. Preobrazhenskaya, V. N. Tolkachev, V. A. Kudryashova, and I. V. Yartseva, Zh. Org . Khim. 11, 199 (1975); Chem. Abstr. 82, 140433 (1975).Google Scholar
  81. 81.
    V. N. Tolkachev, M. N. Preobrazhenskaya, and M. Z. Kornveits, Zh. Org . Khim. 13, 416 (1977).Google Scholar
  82. 82.
    R. L. Franklin and H. M. Sell, J. Chem. Eng. Data 14, 267 (1969).Google Scholar
  83. 83.
    M. N. Preobrazhenskaya, V. N. Tolkachev, O. N. Geling, and N. P. Kostyuchenko, Zh. Org . Khim. 10, 1764 (1974); Khim Chem. Abstr. 81, 136435 (1974).Google Scholar
  84. 84.
    M. N. Preobrazhenskaya, I. A. Korbukh, V. N. Tolkachev, Y. V. Dobrynin, and G. I. Vornovitskaya, in Nucleosides, Nucleotides and Their Biological Application. Les Colloques de l’INSERM (J.L.Imbach, ed.), Vol. 81, pp. 85–116 (1978).Google Scholar
  85. 85.
    V. N. Tolkachev, M. N. Preobrazhenskaya, V. A. Kudryasheva, and K. F. Turchin, Zh. Org . Khim. 12, 1080 (1976); Chem. Abstr. 85, 124268 (1976).Google Scholar
  86. 86.
    M. M. Vigdorchik, M. N. Preobrazhenskaya, and N. N. Suvorov, Tetrahedron Lett. 1968, 4645.Google Scholar
  87. 87.
    T. Y. Shen, Angew. Chem. 9, 678 (1970).Google Scholar
  88. 88.
    M. N. Preobrazhenskaya, S. Y. Melnik, E. A. Utkina, E. G. Sokolova, and N. N. Suvorov, Zh. Org . Khim. 10, 863 (1974); Chem. Abstr. 81, 25880 (1974).Google Scholar
  89. E. A. Utkina, S. Y. Melnik, M. N. Preobrazhenskaya, and N. N. Suvorov, (1975), Zh. Org . Khim. 11 910 (1975); Chem. Abstr. 83 43661.Google Scholar
  90. 90.
    E. A. Utkina, S. Y. Melnik, and M. N. Preobrazhenskaya, Bioorg. Khim. 1, 1423 (1975); Chem. Abstr. 84, 90489 (1976).Google Scholar
  91. 91.
    K. Hamada, S. Tanaka, T. Suzukawa, S. Morisada, M. Fukui, K. Kadota, and T. Okuda, jpn. Konkai Tokyo Koho JP, 60, 246, 395, May 1984; Chem. Abstr. 106, 849904 (1987).Google Scholar
  92. 92.
    M. N. Preobrazhenskaya, I. V. Yartseva, and L. V. Ektova, Dokl. Akad. Nauk SSSR 215, 873 (1974); Chem. Abstr. 81, 25896 (1974).Google Scholar
  93. 93.
    G. P. Ellis and J. Honeyman, Carbohydr. Chem. 10, 95 (1955).Google Scholar
  94. 94.
    P. Nanasi and R. Bognar, J. Chem. Soc. 1961, 323.Google Scholar
  95. 95.
    L V. Yartseva, L. V. Ektova, and M. N. Preobrazhenskaya, Bioorg. Khim. 1, 189 (1975); Chem. Abstr. 83, 131857 (1975).Google Scholar
  96. 96.
    I. V. Yartseva, L. V. Ektova, M. N. Preobrazhenskaya, N. A. Lesnaya, N. P. Yavorskaya, G. N. Platonova, and Z. P. Sofina, Bioorg. Khim. 1, 1589 (1975); Chem. Abstr. 84, 105995 (1976).Google Scholar
  97. 97.
    L. V. Ektova, V. N. Tolkachev, I. V. Yartseva, T. D. Paramonova, N. A. Lesnaya, Z. P. Sofina, S. S. Marennikova, E. V. Chekunova, and M. N. Preobrazhenskaya, Khim. Farm. Zh. 984, 776.Google Scholar
  98. 98.
    A. L. Schwartz and L. M. Lerner, J. Org . Chem. 40, 24 (1975).Google Scholar
  99. 99.
    N. Numao, H. Hemmi, S. Naujokaitis, M. Rabinovitz, and J. Beisler, J. Med. Chem. 24, 515 (1981).PubMedGoogle Scholar
  100. 100.
    H. Frister and E. Schlimme, Z. Naturforsch. 42c, 603 (1987).Google Scholar
  101. 101.
    H. Fruster, E. Schlimme, Liebigs Ann, Chem. 1985, 1704.Google Scholar
  102. 102.
    T. Saski, K. Minamoto, and K. Hattori, J. Am. Chem. Soc. 95, 1350 (1973).Google Scholar
  103. 103.
    J. Jurczak, G. Grynkiewicz, and A. Zamojski, Carbohydr. Res. 39, 147 (1975).Google Scholar
  104. 104.
    W. Schroeder (to Upjohn Co.) U.S. Patent 2,993,039, July 18, 1961; Chem. Abstr. 55, 23568 (1961).Google Scholar
  105. 105.
    A. P. Kozikowski, and X. M. Cheng, J. Chem. Soc. 1987, 680.Google Scholar
  106. 106.
    F. Lingens, Angew. Chem. 80, 384 (1968).Google Scholar
  107. 107.
    E. L. Ruban, M. I. Verkhovtseva, and L. B. Lobyreva, Usp. Mikrobiol, Akad. Nauk SSSR Vses. Mikrobiol. Ovo. 3, 129 (1966).Google Scholar
  108. 108.
    F. Lingens and H. Hellmann, Angew. Chem. 69, 97 (1957).Google Scholar
  109. 109.
    A. A. P. G. Archer and J. Harley-Mason, Proc. Chem. Soc. 1958, 285.Google Scholar
  110. 110.
    M. N. Preobrazhenskaya, K. B. Kholodkovskaya, and N. N. Suvorov, Sin. Pirodn. Soedin. ikh Analogov Fragmentov. Akad. Nauk SSSR Otd. Obshch. Tekhn. Khim. 1965, 233; Chem. Abstr. 65, 2200 (1966).Google Scholar
  111. 111.
    M. N. Preobrashenskaya, K. B. Kholodkovskaya, E. G. Balashova, and N. N. Suvorov, Khim. Geterotsikl. Soedin. Sb. 1: Azotsoderzhashchie Geterotsiklyl 1967, 28; Chem. Abstr. 70, 77699 (1969).Google Scholar
  112. 112.
    M. N. Preobrazhenskaya, K. F. Turchin, E. G. Balashova, and N. N. Suvorov, Zh. Org . Khim. 5 1878 (1969); Chem. Abstr. 72, 21595 (1970).Google Scholar
  113. 113.
    N. Erdman, Z. Chem. 9 269 (1969).Google Scholar
  114. 114.
    M. N. Preobrazhenskaya, E. S. Belen’kaya, L. A. Savel’eva, K. F. Turchin, N. P. Kostyuchenko, Y. N. Sheinker, and N. N. Suvorov, Dokl. Akad. Nauk SSSR 193, 1318 (1970); Chem. Abstr. 74, 12930 (1971).Google Scholar
  115. 115.
    M. N. Preobrazhenskaya, E. S. Belen’kaya, L. A. Savel’eva, K. F. Turchin, E. G. Balashova, and N. N. Suvorov, Dokl. Akad. Nauk SSSR 202, 97 (1972); Chem. Abstr. 76, 141236 (1972).Google Scholar
  116. L. M. Orlova, M. N. Preobrazhenskaya, K. F. Turchin, Z. G. Starostina, and N. N. Suvorov, 2h. Org. Khim. 5 738 (1969); Chem. Abstr. 71 21971 (1969).Google Scholar
  117. M. N. Preobrazhenskaya, K. G. Zhirnova, N. P. Kostyuchenko, and N. N. Suvorov, Zh. Org . Khim. 8 994 (1972); Chem. Abstr. 77 34243 (1972).Google Scholar
  118. 118.
    N. N. Suvorov, K. B. Kholodkovskaya, and M. N. Preobrazhenskaya, Khim. Geterotsikl. Soedin 1965, 265; Chem. Abstr. 63, 6949 (1965).Google Scholar
  119. 119.
    M. N. Preobrazhenskaya, K. G. Zhirnova, N. P. Kostyuchenko, O. S. Anisimova, and N. N. Suvorov, Khim. Geterotsikl. Soedin. 1921, 778; Chem. Abstr. 76, 25027 (1972).Google Scholar
  120. 120.
    Z. G. Starostina, L. M. Orlova, M. N. Preobrazhenskaya, M. V. Vasin, N. N. Suvorov, and V. V. Antipov, Khim. Farm. Zh. 1972, 14; Chem. Abstr. 78, 58185 (1973).Google Scholar
  121. 121.
    E. Leete, J. Am. Chem. Soc. 81, 6023 (1959).Google Scholar
  122. 122.
    A. Gomez Sanchez, A. Cert Ventula, and U. Scheidegger, Carbohydr. Res. 17, 275 (1971).PubMedGoogle Scholar
  123. 123.
    A. Gomez Sachez, M. Tena Aldave, J. Velasco del Pino, and U. Scheidegger, Carbohydr. Res. 10, 19 (1969).Google Scholar
  124. 124.
    F. Garcia Gonzalez and A. Gomez Sanchez, Adv. Carbohydr. Chem. 20, 303 (1965).Google Scholar
  125. 125.
    F. Garcia Gonzalez, J. Fernandez-Bolanos, and J. Galbis Perez, An. Quim 70, 1082 (1974); Chem. Abstr. 83, 193598 (1975).Google Scholar
  126. 126.
    A. Gomez Sanchez, E. Toledano, and M. Gomez Guillen, J. Chem. Soc. Perkin Trans. 11237 (1974).Google Scholar
  127. 127.
    E. Raman Galan, J. Galbis Perez, and M. Arevalo Arevalo, Carbohydr. Res. 116, 255 (1983).Google Scholar
  128. 128.
    J. Jasinska, Rocz. Chem. 45, 1641 (1971); Chem. Abstr. 76, 99981 (1972).Google Scholar
  129. 129.
    J. Jasinska and J. Sokolowski, Rocz. Chem. 42, 275 (1968); Chem. Abstr. 69, 77683 (1968).Google Scholar
  130. 130.
    J. Jasinska and J. Sokolowski, Rocz. Chem. 42, 2121 (1968); Chem. Abstr. 70, 115482 (1969).Google Scholar
  131. 131.
    Z. Smitacz and H. Myszka, Carbohydr. Res. 186, 335 (1989).Google Scholar
  132. 132.
    A. A. Akhrem, N. I. Garbuz, E. I. Kvasyuk, and I. A. Mikhailopulo, Zh. Obshch. Khim. 45, 1394 (1976); Chem. Abstr. 85, 160453 (1976).Google Scholar
  133. 133.
    O. Makabe, H. Suzuki, and S. Umesawa, Bull, Chem. Soc. Jpn. 49, 3552 (1977).Google Scholar
  134. 134.
    I. A. Korbukh, M. N. Preobrazhenskaya, and O. N. Judina, J. Carbohydr. Nucleosides Nucleotides 1, 363 (1974).Google Scholar
  135. 135.
    I. A. Korbukh, O. N. Judina, and M. N. Preobrazhenskaya, Zh. Org . Khim. 10, 1787 (1974); Chem. Abstr. 81, 136452 (1974).Google Scholar
  136. 136.
    O. Makabe, M. Nakamura, and S. Umesawa, Bull. Chem. Soc. Jpn. 48, 3210 (1975).Google Scholar
  137. 137.
    M. N. Preobrazhenskaya, I. A. Korbukh, and F. F. Blanco, J. Carbohydr. Nucleosides, Nucleotides 2, 73 (1975).Google Scholar
  138. 138.
    I. A. Korbukh, L. N. Abramova and M. N. Preobrazhenskaya, Zh. Org . Khim. 13, 731 (1977).Google Scholar
  139. 139.
    I. A. Korbukh, L. N. Abramova, B. N. Stepanenko, and M. N. Preobrazhenskaya, Dokl. Akad. Nauk SSSR 220, 240 (1975); Chem. Abstr. 82, 125550 (1975).Google Scholar
  140. 140.
    J. L. Barascut, C. Tamby, and J. L. Imbach, J. Carbohydr. Nucleosides Nucleotides 1, 77 (1974).Google Scholar
  141. 141.
    C. Chavis, F. Grodenic, and J. L. Imbach, Eur. J. Med. Chem. 14, 125 (1979).Google Scholar
  142. 142.
    I. A. Korbuch, L. N. Abramova, B. N. Stepanenko, and M. N. Preobrazhenskaya, Zh. Org . Khim. 14, 2169 (1978); Chem. Abstr. 90, 121958 (1979).Google Scholar
  143. 143.
    I. A. Korbukh, O. V. Budanova, N. G. Jakunina, V. L. Seraya, and M. N. Preobrazhenskaya, Zh. Org. Khim. 12, 1560 (1976); Chem. Abstr. 88, 38104 (1978).Google Scholar
  144. 144.
    I. A. Korbukh, N. G. Jakunina, and M. N. Preobrazhenskaya, Zh. Org . Khim. 11, 463 (1975); Chem. Abstr. 83, 28500 (1975).Google Scholar
  145. 145.
    I. A. Korbukh, O. V. Budanova, and M. N. Preobrazhenskaya in Nucleic Acid Chemistry (L. B. Townsend and R. S. Tipson, eds.), Part 2, p. 469, New York (1978).Google Scholar
  146. 146.
    R. A. Earl, R. P. Panzica, and L. B. Townsend, J. Chem. Soc. Perkin, Trans. 1, 2672 (1972).Google Scholar
  147. 147.
    F. F. Blanco, I. A. Korbukh, M. N. Preobrazhenskaya, and H. Dorn, Khim, Geterotsikl, Soedin. 1981, 1512.Google Scholar
  148. 148.
    Y. S. Shanghvi, K. G. Upadhya, N. Dailey, R. K. Robins and G. R. Revanker, Nucleosides Nucleotides 6, 737 (1987).Google Scholar
  149. 149.
    M. K. Spassova, A. Holy and M. Masojidkova, Collect Czech. Chem. Commun. 51, 1512 (1986).Google Scholar
  150. 150.
    M. T. Garcia Lopez, R. Herranz, and G. Alonso, J. Heterocycl. Chem. 17, 113 (1980).Google Scholar
  151. 151.
    R. R. Schmidt, W. Guillard, and D. Heermann, J. Heterocycl. Chem. 20, 1447 (1983).Google Scholar
  152. J. Jasinska and J. Sokolowski, Zesz. Nauk. Wyzsz. Szk. Pedagog. Gdansku Mat. Fiz. Chem. 10 169 (1970); Chem. Abstr. 7431938 (1971).Google Scholar
  153. 153.
    A. A. Akhrem, E. I. Kvasyuk, and I. A. Mikhailopulo, Zh. Obshch. Khim. 45, 1403 (1976). Chem. Abstr. 85, 143390 (1976).Google Scholar
  154. 154.
    M. T. Garcia Lopez, R. Herranz and G. Alonso, J. Med. Chem. 22, 807 (1979).Google Scholar
  155. 155.
    M. T. Garcia Lopez, M. J. Dominguez, R. Herranz, R. M. Sanches Perez, A. Contreras, and G. Alonso, J. Med. Chem. 23, 657 (1983).Google Scholar
  156. 156.
    I. A. Korbukh, S. V. Kitaev, and M. N. Preobrazhenskaya, Zh. Org . Khim. 12, 682 (1976); Chem. Abstr. 85, 33328 (1976).Google Scholar
  157. 157.
    A. A. Akhrem, E. I. Kvasyuk, I. A. Mikhailopulo, and N. E. Pupeiko, Vests i Akad. Navuk BSSR Ser. Khim. Navuk 1978, 124, Chem. Abstr. 90, 152528 (1979).Google Scholar
  158. 158.
    J. T. Witkowski and R. K. Robins, J. Org . Chem. 35, 2635 (1970).PubMedGoogle Scholar
  159. 159.
    H. Vorbrüggen, K. Krolikiewicz, and B. Bennua, Chem. Ber. 114, 1234 (1981).Google Scholar
  160. 160.
    J. T. Witkowski, R. K. Robins, R. W. Sidwell, and L. N. Simon, J. Med. Chem. 15, 1150 (1972).Google Scholar
  161. 161.
    C. M. Carol, Romanian Pat. 84761 (1984); Chem. Abstr. 103, 71624 (1984).Google Scholar
  162. 162.
    J. T. Witkowski, M. Fuertes, P. D. Cook, and R. K. Robins, J. Carbohydr. Nucleosides Nucleotides 2, 1 (1975).Google Scholar
  163. 163.
    Y. S. Sanghvi, N. B. Hanna, S. B. Larson, R. K. Robins, and G. R. Revankar, Nucleosides Nucleotides 6, 761 (1987).Google Scholar
  164. 164.
    R. D. Youssefyeh, J. P. N. Verheyden, and J. G. Moffatt, J. Org . Chem. 44, 1301 (1979).Google Scholar
  165. 165.
    A. S. Narang, and R. Nince, J. Med. Chem. 20, 1684 (1977).Google Scholar
  166. 166.
    Y. Ito, Y. Nill, S. Kobayashi, and M. Ohna, Tetrahedron Lett. 1979, 2521.Google Scholar
  167. 167.
    J. T. Witkowski, R. K. Robins, G. P. Khare, and R. W. Sidwell, J. Med. Chem. 16, 935 (1973).Google Scholar
  168. 168.
    G. K. Szekeres, J. T. Wikowski, and R. K. Robins, J. Carbohydr. Nucleosides Nucleotides 4, 147 (1977).Google Scholar
  169. 169.
    M. V. Pickering, J. T. Witkowski, and R. K. Robins, J. Med. Chem. 19, 841 (1976).Google Scholar
  170. 170.
    F. Gomez de las Heras, M. Camarasa, A. R. Martines Fernandes, and J. A. Escario, Eur. y. Med. Chem. 19, 89 (1984).Google Scholar
  171. 171.
    M. Fuertes, R. K. Robins, and J. T. Witkowski, y. Carbohydr. Nucleosides Nucleotides 3, 169 (1976).Google Scholar
  172. 172.
    J. T. Witkowski and R. K. Robins, in Chemistry and Biology of Nucleosides and Nucleotides ( R. Harmon, R. Robins, and L. Townsend, eds.), pp. 267–286, Academic Press, New York (1978).Google Scholar
  173. 173.
    M. Fuertes, S. R. Naik, R. K. Robins, and J. T. Witkowski, Abstr., 5th Int. Congr. Het. Chem., Ljubljana (1975), p. 348.Google Scholar
  174. 174.
    H. Vorbrüggen, German Offenlegunsshrift 2508312; Chem. Abstr. 86, 5772 (1977).Google Scholar
  175. 175.
    N. B. Hanna, S. D. Dimitrijewich, S. B. Larson, R. K. Robins, and G. R. Revankar, J. Heterocycl. Chem. 25, 1857 (1988).Google Scholar
  176. 176.
    M. Camarasa and F. Gomez de las Heras, Anal, Quim, Ser. G 79, 407 (1983).Google Scholar
  177. 177.
    S. R. Naik, J. T. Witkowski, and R. K. Robins, J. Heterocycl. Chem. 11, 57 (1974).Google Scholar
  178. 178.
    Y. S. Sanghvi, N. B. Hanna, S. B. Larson, J. M. Fujitaki, R. C. Willis, R. A. Smith, R. K. Robins, and G. R. Revankar, J. Med. Chem. 31, 333 (1988).Google Scholar
  179. 179.
    F. A. Lehmkuhl, J. T. Witkowski, and R. K. Robins, J. Heterocycl. Chem. 9, 1195 (1972).Google Scholar
  180. 180.
    O. Makabe, H. Suzuki, and S. Umesawa, Bull. Chem. Soc. Jpn. 50, 2689 (1977).Google Scholar
  181. 181.
    O. Makabe, S. Fukatsu, and S. Umesawa, Bull, Chem. Soc. Jpn. 45, 2577 (1972).Google Scholar
  182. 182.
    J. P. Ferris and H. C. Hyang, Chem. Commun. 1978, 1094.Google Scholar
  183. 183.
    R. B. Meyer, G. R. Revankar, P. D. Cook, K. W. Ehler, M. P. Schweizer, and R. K. Robins, y. Heterocycl. Chem. 17, 159 (1980).Google Scholar
  184. 184.
    I. D. Shingarova, I. V. Jarzeva, and M. N. Preobrazhenskaya, Khim. Geterotsikl. Soedin. 1987, 231.Google Scholar
  185. 185.
    I. D. Shingarova, A. T. Lebedev, and M. N. Preobrazhenskaya, Khim. Geterotsikl. Soedin. 1987, 937.Google Scholar
  186. 186.
    I. D. Shingarova, I. V. Jarzeva, M. P. Nemerjuk, A. L. Sedov, T. S. Safonova, G. A. Osipov, J. J. Volodin, and M. N. Preobrazhenskaya, Khim, Geterotsikl. Soedin. 1984, 1556.Google Scholar
  187. 187.
    Z. Smitacz and H. Myszka, Carbohydr. Res. 172, 71 (1988).Google Scholar
  188. 188.
    Z. Smitacz, R. Szweda, and H. Myszka, Carbohydr. Res. 153, 33 (1986).Google Scholar
  189. 189.
    Z. Smitacz, R. Szweda, and J. Drewniak, Carbohydr. Res. 143, 151 (1985).Google Scholar
  190. 190.
    F. Micheel and G. Baum, Chem. Ber. 90, 1595 (1957).Google Scholar
  191. 191.
    R. R. Schmidt, J. Karg, and W. Guilliard, Angew. Chem., 87, 89 (1975).Google Scholar
  192. 192.
    R. R. Schmidt, J. Karg, and W. Guilliard, Chem. Ber. 110, 2433 (1977).Google Scholar
  193. 193.
    M. W. Logue and B. H. Han, Carbohydr. Res. 121, 299 (1983).Google Scholar
  194. 194.
    R. R. Schmidt, W. Guilliard, and D. Heermann, Ann. Chem. 48, 2309.Google Scholar
  195. 195.
    K.-H. Jung, R. R. Schmidt, and D. Heermann, Chem. Ber. 114, 2834 (1981).Google Scholar
  196. 196.
    R. R. Schmidt, W. Guilliard, and J. Karg, Chem. Ber. 110, 2445 (1977).Google Scholar
  197. 197.
    O. L. Acevedo, S. H. Krawczyk, and L. B. Townsend, J. Org . Chem. 51, 1050 (1986).Google Scholar
  198. 198.
    M. Yokoyama, K. Kumata, N. Yamata, H. Noro, and Y. Sudo, y. Chem. Soc. Perkin Trans. 1 1988, 2309.Google Scholar
  199. 199.
    J. T. Witkowski, L. F. Christensen, and R. K. Robins,.7. Carbohydr. Nucleosides, Nucleotides 5, 363 (1978).Google Scholar
  200. 200.
    R. R. Schmidt, and D. Heermann, Chem. Ber. 114, 2834 (1981).Google Scholar
  201. 201.
    T. Mukaramo, M. Otsuka, S. Kobayashi, and M. Ohno, Heterocycles 15, 301 (1981).Google Scholar
  202. 202.
    H. Ogura, H. Takanashi, and O. Sato, Chem. Pharm. Bull. 29, 1838 (1981).Google Scholar
  203. 203.
    M. T. Garcia-Lopez, G. Garcia-Munoz, J. Iglesias, and R. Madronero,,~. Heterocycl. Chem. 6, 639 (1969).Google Scholar
  204. 204.
    H. E. Khadem, D. Norton, and M. H. Meshreki, Carbohydr. Res. 16, 409 (1971).Google Scholar
  205. 205.
    R. E. Harmon, R. A. Earl, and S. K. Gupta, Chem. Commun. 1971, 296.Google Scholar
  206. 206.
    R. E. Harmon„ R. A. Earl, and S. K. Gupta, J. Org . Chem. 36, 2553 (1971).Google Scholar
  207. 207.
    R. Alonso, M. T. Garcia-Lopez, G. Garcia-Munoz, R. Madronero, and M. Rico, J. Heterocycl. Chem. 7, 1269 (1970).Google Scholar
  208. 208.
    F. Chretien and B. Gross, y. Heterocycl. Chem. 19 263 (1982).Google Scholar
  209. 209.
    R. Alonso, M. Camarasa, G. Alonso, and F. G. de las Heras, Eur. J. Med. Chem. 15, 105 (1980).Google Scholar
  210. 210.
    M. Camarasa, R. Alonso, and F. G. de las Heras, Carbohydr. Res. 83, 152 (1980).Google Scholar
  211. 211.
    F. G. de las Heras, R. Alonso, and G. Alonso, J. Med. Chem. 22, 496 (1979).Google Scholar
  212. 212.
    F. G. de las Heras, R. M. Sanchez Perez, and M. L. Aguado, Eur. J. Med. Chem. 16, 339 (1981).Google Scholar
  213. 213.
    J. Baddiley, J. G. Buchanan, and G. O. Osborne, J. Chem. Soc. 1958, 3606.Google Scholar
  214. 214.
    M. W. Logue and B. H. Han, Carbohydr. Res. 121 287 (1983).Google Scholar
  215. 215.
    J. Baddiley, J. G. Buchanan, and G. O. Osborne, J. Chem. Soc. 1958, 1651.Google Scholar
  216. 216.
    F. Chretien, B. Castro, and B. Gross, Synthesis 1979, 937.Google Scholar
  217. 217.
    R. A. Earl and L. B. Townsend, Can. J. Chem. 58, 2550 (1980).Google Scholar
  218. 218.
    W. Hutzenlaub, R. L. Tolman, and R. K. Robins, J. Med. Chem. 15, 879 (1972).PubMedGoogle Scholar
  219. 219.
    C. W. Smith, R. W. Sidwell, R. K. Robins, and R. L. Tolman, J. Med. Chem. 15, 883 (1972).Google Scholar
  220. 220.
    C. W. Smith, R. W. Sidwell, R. K. Robins, and R. L. Tolman, J. Am. Chem. Soc. 94, 2530 (1972).Google Scholar
  221. 221.
    F. Chretien and B. Gross, Tetrahedron 38, 103 (1982).Google Scholar
  222. 222.
    W. Schorkhuber and E. Zbiral, Chem. Ber. 114, 3165 (1981).Google Scholar
  223. 223.
    W. Schorkhuber and E. Zibral, Ann. Chem. 1980, 1455.Google Scholar
  224. 224.
    H. Tanaka, T. Hayashi, and K. Nakayama, Agr. Biol. Chem. 37, 1731 (1973).Google Scholar
  225. 225.
    J. A. Montgomery and H. J. Thomas, J. Med. Chem. 15, 182 (1972).PubMedGoogle Scholar
  226. 226.
    T. C. Thurber and L. B. Townsend, J. Am. Chem. Soc. 95, 3081 (1973).Google Scholar
  227. 227.
    T. C. Thurber and L. B. Townsend, J. Org . Chem. 41, 1041 (1976).PubMedGoogle Scholar
  228. 228.
    K. Ochiai, A. Sato, and A. Furuya, J. Agr. Chem. Soc. Jpn. 50, 423 (1976).Google Scholar
  229. 229.
    H. Shirae, K. Yokozeki, and K. Kubota, Agr. Biol. Chem. 52, 295 (1988).Google Scholar
  230. 230.
    U. Juni, F. Tetsuro, I. Takamitsu, and S. Masahiro, EP 0233493 (1987).Google Scholar
  231. 231.
    T. Utagawa, H. Morisawa, S. Yamanaka, A. Yamazaki, and Y. Hirose, Agr. Biol. Chem. 50, 121 (1986).Google Scholar
  232. 232.
    A. K. Drabikowska, L. Dudycz, and D. Shugar, J. Med. Chem. 22, 653 (1979).PubMedGoogle Scholar
  233. 233.
    K. Ramasamy, G. D. Kini, R. K. Robins, and G. R. Revankar, Nucleosides Nucleotides 6, 901 (1987).Google Scholar
  234. 234.
    G. D. Kini, R. K. Robins, and T. L. Avery, J. Med. Chem. 32, 1447 (1989).PubMedGoogle Scholar
  235. 235.
    M. Camarasa and F. G. de las Heras, J. Heterocycl. Chem. 20, 1307 (1983).Google Scholar
  236. 236.
    F. G. de las Heras and M. Camarasa, Nucleosides Nucleotides 1, 45 (1982).Google Scholar
  237. 237.
    M. Fuertes, J. T. Witkowski, D. G. Streeter, and R. K. Robins, J. Med. Chem. 17, 642 (1974).Google Scholar
  238. 238.
    E. J. Prisbe, J. Smejkal, J. P. H. Verheyden, and J. G. Moffatt, J. Org . Chem. 41, 1836 (1976).Google Scholar
  239. 239.
    L. Dudycz, D. Shugar, E. De Clercq, and J. Descamps, J. Med. Chem. 20, 1354 (1977).PubMedGoogle Scholar
  240. 240.
    N. B. Hanna, K. G. Upadhya, C. R. Petrie, R. K. Robins, and G. R. Revankar. Nucleosides Nucleotides 5, 343 (1986).Google Scholar
  241. 241.
    N. B. Hanna, R. K. Robins, and G. R. Revankar, Carbohydr. Res. 165, 267 (1987).PubMedGoogle Scholar
  242. 242.
    G. R. Revankar and L. B. Townsend, J. Heterocycl. Chem. 7, 117 (1970).Google Scholar
  243. 243.
    I. A. Korbukh, F. F. Blanco, and M. N. Preobrazhenskaya, Tetrahedron Lett. 1973, 4619.Google Scholar
  244. 244.
    B. L. Kam and J. L. Imbach, J. Carbohydr. Nucleosides Nucleotides 1, 287 (1974).Google Scholar
  245. 245.
    J. L. Barascut, B. Kam, and J. L. Imbach, Bull. Soc. Chim. 1976, 1983.Google Scholar
  246. 246.
    J. L. Barascut and J. L. Imbach, in Chemistry and Biology of Nucleosides and Nucleotides ( R. Harmon, R. Robins, and L. Townsend, eds.) pp. 239–250, Academic Press, New York (1978).Google Scholar
  247. 247.
    J. L. Barascut, D. Molko, and J. L. Imbach, J. Carbohydr. Nucleosides Nucleotides 7, 185 (1980).Google Scholar
  248. 248.
    B. Kam, J. L. Barascut, and J. L. Imbach, Carbohydr. Res. 78, 285 (1980).Google Scholar
  249. 249.
    Z. Kazimierczuk, H. Lonnberg, J. Vilpo, and W. Pfleiderer, Nucleosides Nucleotides 8, 599 (1988).Google Scholar
  250. 250.
    I. A. Korbukh, L. N. Abramova, B. N. Stepanenko, and M. N. Preobrazhenskaya, Dokl. Akad. Nauk SSSR 216, 564 (1974); Chem. Abstr. 81, 63912 (1974).Google Scholar
  251. 251.
    H. Brauniger and A. Koine, Angew, Chem. 78, 457 (1966).Google Scholar
  252. 252.
    G. Alonso, G. Garcia-Munoz, and R. Madronero, J. Heterocycl. Chem. 7, 1435 (1970).Google Scholar
  253. 253.
    I. A. Korbukh, F. F. Blanco, and M. N. Preobrazhenskaya, Zh. Org . Khim. 10, 1550 (1974); Chem. Abstr. 81, 136443 (1974).Google Scholar
  254. 254.
    G. R. Revankar and L. B. Townsend, J. Heterocycl. Chem. 7, 1329 (1970).Google Scholar
  255. 255.
    I. A. Korbukh, F. F. Blanco, and M. N. Preobrazhenskaya, Zh. Org . Khim. 9, 852 (1973); Chem. Abstr. 79, 5518 (1973).Google Scholar
  256. 256.
    I. A. Korbukh, F. F. Blanco, and M. N. Preobrazhenskaya, Zh. Org . Khim. 10, 1091 (1974); Chem. Abstr. 81, 63915 (1974).Google Scholar
  257. 257.
    M. V. Pickering, P. Dea, D. G. Streeter, and J. T. Witkowski, J. Med. Chem. 20, 818 (1977).Google Scholar
  258. 258.
    G. Alonso, M. Fuertes, M. T. Garcia-Lopez, F. G. de las Heras, J. M. Infante, and M. Stud, Eur. J. Med. Chem. Chim. Ther. 13, 155 (1978).Google Scholar
  259. 259.
    I. A. Korbukh, F. F. Blanco, I. R. Kovelman, and M. N. Preobrazhenskaya, Zh. Org . Khim. 14, 1101 (1978); Chem. Abstr. 89, 110255 (1978).Google Scholar
  260. 260.
    P. E. Wittreich, K. A. Folkers, and F. M. Robinson, U. S. Patent 3, 138, 582 (1964); Chem. Abstr. 61, 7091 (1964).Google Scholar
  261. 261.
    E. E. Rengevich, V. P. Chernetski, and N. G. Burlii, Ukr. Khim. Zh. 41, 1104 (1975); Chem. Abstr. 84, 74, 555 (1976).Google Scholar
  262. 262.
    G. R. Revankar and L. B. Townsend, y. Heterocycl. Chem. 5, 785 (1968).Google Scholar
  263. 263.
    G. Garcia-Munoz, I. Iglesia, R. Madronero, and M. Saldana, Anal. Quim 4, 383 (1970).Google Scholar
  264. 264.
    J. L. Barascut, B. Kam, and J. L. Imbach, Bull. Soc. Chim. 1977, 1305.Google Scholar
  265. 265.
    J. L. Barascut, B. Kam, and J. L. Imbach, J. Heterocycl. Chem. 14, 1305 (1977).Google Scholar
  266. 266.
    V. P. Chernetskii, and E. E. Rengevich, Khim. Geterotsikl. Soedin. 7, 1129 (1968); Chem. Abstr. 70, 78320 (1969).Google Scholar
  267. 267.
    V. P. Chernetskii, E. E. Rengevich, L. S. Usenko, and I. F. Franchuk, Khim. Geterotsikl. Soedin 10, 1429 (1971); Chem. Abstr. 76, 34520 (1972).Google Scholar
  268. 268.
    H. Brauniger and A. Koine, Arch. Pharm. (Weinheim) 296, 665 (1963).Google Scholar
  269. 269.
    H. Brauniger and A. Koine, Arch. Pharm. (Weinheim) 298, 644 (1965).Google Scholar
  270. 270.
    E. E. Rengevich, V. P. Chernetskii, and L. S. Usenko, Ukr. Khim. Zh. 41, 635 (1975); Chem. Abstr. 83, 193617 (1975).Google Scholar
  271. 271.
    E. E. Rengevich, Synthesis and investigation of glycosidic and aminoacidic derivatives in benzotriasole series, Dissertation, Academy of Science, Ukrainian SSR, Inst. Org. Chem., Kiev (1970).Google Scholar
  272. 272.
    M. M. Kulchitskii and S. V. Bogacheva, Khihm. Geterotsikl. Soedin 1961 (1978); Chem. Abstr. 90, 121963 (1979).Google Scholar
  273. 273.
    I. A. Korbukh, F. F. Blanco, M. N. Preobrazhenskaya, H. Dorn, N. Kondakova, T. Sukhova, and N. Kostyuchenko, Zh. Org . Khim. 9, 1266 (1973); Chem. Abstr. 79, 79120 (1973).Google Scholar
  274. 274.
    I. A. Korbukh, M. N. Preobrazhenskaya, H. Dorn, N. Kondakova, and N. Kostyuchenko, Zh. Org . Khim. 10, 1095 (1974); Chem. Abstr. 81, 63913 (1974).Google Scholar
  275. 275.
    V. Rosseau and H. Lindwall, J. Am. Chem. Soc. 72, 3047 (1950).Google Scholar
  276. 276.
    M. Fuertes, G. Garcia-Munoz, M. Lora-Tamayo, R. Madronero, and M. Stud, Tetrahedron Lett. 1968, 4089.Google Scholar
  277. 277.
    M. Fuertes, G. Garcia-Munoz, R. Madronero, and M. Stud, Tetrahedron 28, 623 (1972).Google Scholar
  278. 278.
    M. Fuertes, G. Garcia-Munoz, F. G. de las Heras, R. Madronero, and M. Stud, Tetrahedron 28, 4099 (1972).Google Scholar
  279. 279.
    G. Alonso, G. Garcia-Munoz, C. Diez, F. G. de las Heras, and R. Navarro, j. Carbohydr. Nucleosides Nucleotides 3, 157 (1976).Google Scholar
  280. 280.
    G. Garcia-Munoz, J. Iglesias, M. Lora-Tamayo, and R. Madronero, f. Heterocycl. Chem. 5, 699 (1968).Google Scholar
  281. 281.
    G. Garcia-Munoz, J. Iglesias, M. Lora-Tamayo, R. Madronero, and M. Stud, y. Carbohydr. Nucleosides Nucleotides 1, 381 (1974).Google Scholar
  282. 282.
    G. Garcia-Munoz, F. G. de las Heras, R. Madronero, and M. Stud, Anal. Quim. 70, 283 (1974).Google Scholar
  283. 283.
    M. Fuertes, G. Garcia-Munoz, F. G. de las Heras, R. Madronero, and M. Stud, J. Heterocycl. Chem. 10, 503 (1973).Google Scholar
  284. 284.
    M. Fuertes, G. Garcia-Munoz, R. Madronero, and M. Stud, J. Heterocycl. Chem. 8, 261 (1971).Google Scholar
  285. 285.
    G. Garcia-Munoz, F. G. de las Heras, R. Madronero, and M. Stud, Anal. Quim. 69, 1335 (1973).Google Scholar
  286. 286.
    T. J. Batterman, NMR Spectra of Simple Heterocycles. Wiley—Interscience, New York (1973).Google Scholar
  287. 287.
    H. Dorn, J. Prakt. Chem. 319, 281 (1977).Google Scholar
  288. 288.
    G. R. Kreishman, J. T. Witkowski, R. K. Robins, and M. P. Schweizer, J. Am. Chem. Soc. 94, 3894 (1972).Google Scholar
  289. 289.
    J. Kobe and J. C. Valdes, Carbohydr. Res. 65, 278 (1978).Google Scholar
  290. 290.
    P. Dea and R. K. Robins, in Chemistry and Biology of Nucleosides and Nucleotides ( R. Harmon, R. Robins, and L. Townsend, eds.), pp. 301–310, Academic Press, New York (1978).Google Scholar
  291. 291.
    T. C. Thurber, R. J. Pugmire, and L. B. Townsend, y. Heterocycl. Chem. 11, 645 (1974).Google Scholar
  292. 292.
    L. B. Townsend, in Synthetic Procedures in.Nucleic Acid Chemistry (W. W. Zorbach and R. S. Tipson, eds.), Vol. 2, pp. 267–398, Wiley—Interscience, New York (1973).Google Scholar
  293. 293.
    P. Dea, M. P. Schweizer, and G. P. Kreishman, Biochemistry 13, 1862 (1974).PubMedGoogle Scholar
  294. 294.
    M. Sundaralingam, Ann. N. Y. Acad. Sci. 255, 3 (1975).PubMedGoogle Scholar
  295. 295.
    W. Guschlbauer and T. D. Son, Nucleic Acid Res. Spec. Publ. 1, 85 (1975).Google Scholar
  296. 296.
    D. B. Davis and S. S. Danyluk, Biochemistry 13, 4417 (1974).Google Scholar
  297. 297.
    D. J. Wood, R. J. Mynott, F. E. Hruska, and R. H. Sarma, FEBS Lett. 34, 323 (1973).PubMedGoogle Scholar
  298. 298.
    D. L. Miles, D. W. Miles, P. Redington, and H. Eyring, Proc. Natl. Acad. Sci. USA 73, 4257 (1976).PubMedGoogle Scholar
  299. 299.
    D. L. Miles, D. W. Miles, and H. Eyring, Biochim. Biophys. Acta 518, 17 (1978).PubMedGoogle Scholar
  300. 300.
    A. Saran and C. Mitra, Indian J. Biochem. Biophys. 16, 304 (1979).PubMedGoogle Scholar
  301. 301.
    A. K. Ghose, G. M. Crippen, G. R. Revankar, P. A. McKernan, D. F. Smee, and R. K. Robins, J. Med. Chem. 32, 746 (1989).PubMedGoogle Scholar
  302. 302.
    D. L. Miles, D. W. Miles, and H. Eyring, Ann. NY Acad. Sci. 367, 518 (1981).PubMedGoogle Scholar
  303. 303.
    D. W. Miles, G. R. Revankar, and R. K. Robins, J. Phys. Chem. 87, 2444 (1983).Google Scholar
  304. 304.
    M. J. S. Dewar, E. G. Loebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985).Google Scholar
  305. 305.
    J. J. P. Stewart, J. Comput. Aided Mol. Des. 4, 1 (1990).Google Scholar
  306. 306.
    I. A. Korbukh and V. I. Korbukh, Unpublished results.Google Scholar
  307. 307.
    Z. Ciunik, H. Paulsen, P. Luger, Z. Smitacz, and H. Myszka, Acta Cryst. Allogr. 1345, 512 (1989).Google Scholar
  308. 308.
    P. Prusiner and M. Sundaralingam, Acta Cryst. allogr. Sect. B 32, 419 (1976).Google Scholar
  309. 309.
    D. G. Streeter, J. T. Witkowski, G. P. Khare, R. W. Sidwell, R. J. Bauer, R. K. Robins, and L. N. Simon, Proc. Natl. Acad. Sci. USA 70, 1174 (1973).PubMedGoogle Scholar
  310. 310.
    L. B. Allen, K. H. Boswell, T. A. Khwaja, R. B. Meyer, R. W. Sidwell, J. T. Witkowski, L. F. Christensen, and R. K. Robins, J. Med. Chem. 21, 742 (1978).Google Scholar
  311. 311.
    D. G. Streeter, L. N. Simon, R. K. Robins, and J. P. Miles, Biochemistry 13, 4543 (1974).PubMedGoogle Scholar
  312. 312.
    A. Furuya, K. Kikuchi, and A. Sato, Japanese Patent 75,123,883 (1975); Chem. Abstr. 84, 42019 (1976).Google Scholar
  313. 313.
    G. R. Revankar, V. C. Solan, R. K. Robins, and J. T. Witkowski, Nucleic Acid Symp. Ser. 9, 65 (1981).Google Scholar
  314. 314.
    S. Tono-Oka, I. Sekikawa, and I. Azuma, Chem. Lett. 1983, 805.Google Scholar
  315. 315.
    S. Tono-Oka and I. Azuma, J. Heterocycl. Chem. 26, 339 (1989).Google Scholar
  316. 316.
    M. I. Khabarova, V. P. Klyagina, I. A. Soboleva, and S. M. Zhenodarova, Bioorg. Khim. 7, 1496 (1981).Google Scholar
  317. 317.
    G. Gebeyehu, V. E. Marquez, A. Van-Cott, D. A. Cooney, J. A. Kelley, H. N. Hayram, G. S. Ahluwalia, R. L. Dion, Y. A. Wilson, and D. G. Johns, J. Med. Chem. 28, 99 (1985).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Maria N. Preobrazhenskaya
    • 1
  • Ilya A. Korbukh
    • 2
    • 3
  1. 1.Institute of New AntibioticsRussian Academy of Medical SciencesMoscowRussia
  2. 2.Cancer Research CenterRussian Academy of Medical SciencesMoscowRussia
  3. 3.Beckman InstrumentsFullertonUSA

Personalised recommendations