Plant Allelochemicals: Linkages between Herbivores and Their Natural Enemies

  • Pedro Barbosa
  • James A. Saunders
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 19)


Insect plant interactions have dominated the thoughts and activities of plant biochemists, insect ecologists and other entomologists for many years. A great deal of effort has been devoted to the development of unifying principles and general concepts that would be parsimonious with available empirical and experimental data and which would accurately describe the patterns exhibited in the multitude of insect-plant interactions.


Natural Enemy Caffeic Acid Insect Herbivore Gypsy Moth Cardiac Glycoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DETHIER, V.G. 1954. Evolution of feeding preferences in phytophagous insects. Evolution 8: 33–54.CrossRefGoogle Scholar
  2. 2.
    PRICE, P.W., C.E. BOUTON, P. GROSS, B.A. McPHERSON, J.N. THOMPSON, A.E. WEIS. 1980. Interactions among three trophic levels. Influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11: 41–65.Google Scholar
  3. 3.
    BERGMAN, J.M., W.M. TINGEY. 1979. Aspects of interaction between plant genotypes and biological control. Bull. Entomol. Soc. Amer. 25: 275–279.Google Scholar
  4. 4.
    FEENY, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 57: 565–581.CrossRefGoogle Scholar
  5. 5.
    FEENY, P. 1976. Plant apparency and chemical defense. In: Biochemical Interactions Between Plants and Insects. Recent Advances in Phytochemistry. (J.W. Wallace, R.L. Mansell, eds.), Vol. 10, Plenum Press, New York, pp. 1–14.CrossRefGoogle Scholar
  6. 6.
    RHOADES, D.F., R.G. CATES. 1976. Toward a general theory of plant anti-herbivore chemistry. In: J.W. Wallace, R.L. Mansell, eds., op. cit. Reference 5, pp. 168–213.Google Scholar
  7. 7.
    FUTUYMA, D.J. 1976. Food plant specialization and environmental unpredictability in Lepidoptera. Amer. Nat. 110: 285–292.CrossRefGoogle Scholar
  8. 8.
    BERNAYS, E.A. 1978. Tannins: An alternative viewpoint. Entomol. Exp. Appl. 24: 44–53.CrossRefGoogle Scholar
  9. 9.
    FUTUYMA, D.J., F. GOULD. 1979. Associations of plants and insects in a deciduous forest. Ecol. Monogr. 49: 33–50.CrossRefGoogle Scholar
  10. 10.
    BRATTSTEN, L. 1979. Biochemical defense mechanisms in herbivores against plant allelochemicals. In: Herbivores. ( G.A. Rosenthal, D.H. Janzen, eds.), Academic Press, New York, pp. 200–270.Google Scholar
  11. 11.
    CATES, R.G. 1980. Feeding patterns of monophagous, oligophagous, and polyphagous insect herbivores: The effect of resource abundance and plant chemistry. Oecologia 46: 22–31.CrossRefGoogle Scholar
  12. 12.
    CATES, R.G. 1981. Host plant predictability and the feeding patterns of monophagous, oligophagous and polyphagous insect herbivores. Oecologia 48: 319–326.CrossRefGoogle Scholar
  13. 13.
    AHMAD, S. 1982. Roles of mixed-function oxidases in insect herbivory. In: Proc. 5th Intl. Symp. Insect-Plant Relationships. C.A.P.D., Wageningen, The Netherlands, pp. 41–47.Google Scholar
  14. 14.
    JONES, D.A. 1962. Selective eating of the acyanogenic forms of the plant Lotus corniculatus L. by various animals. Nature 193: 1109–1111.ADSCrossRefGoogle Scholar
  15. 15.
    ZAVARIN, E., L. LAWRENCE, M. THOMAS. 1971. Compositional variations of leaf monoterpenes in Cupressus macrocarpa, C. pygmaea, C. goveniana, C. abramisiana and C. sargentii. Phytochemistry 10: 379–393.Google Scholar
  16. 16.
    BROWER, L.P., M. EDMUNDS, C.M. MOFFITT. 1975. Cardenolide content and palatability of a population of Danaus chrysippus butterflies from W. Africa. J. Entomol. 49: 183–196.Google Scholar
  17. 17.
    RHOADES, D.F. 1977. The antiherbivore chemistry of larrea. In: Creosote Bush: Biology and Chemistry of Larrea in New World Deserts. (T.J. Mabry, J.H. Hunziker, D.R. DiFeo, Jr., eds.), Dowden, Hutchinson and Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
  18. 18.
    SEIGLER, D.S., E.E. CONN, J.E. DUNN, D.H. JANZEN. 1979. Cyanogenesis in Acacia farnesiana. Phytochemistry 18: 1389–1390.CrossRefGoogle Scholar
  19. 19.
    LAGENHEIM, J.H., D.E. LINCOLN, W.H. STUBBLEBINE, A.C. GABRIELLI. 1982. Evolutionary implications of leaf resin pocket patterns in the tropical tree Hymenaea (Caesalpinioideae: Leguminosae). Amer. J. Bot. 69: 595–607.CrossRefGoogle Scholar
  20. 20.
    SCHULTZ, J.C., P.J. NOTHNAGLE, I.T. BALWIN. 1982. Seasonal and individual variation in leaf quality of two northern hardwood tree species. Amer. J. Bot. 69: 753–759.CrossRefGoogle Scholar
  21. 21.
    ZUCKER, W.V. 1982. How aphids choose leaves: the roles of phenolics in host selection by a galling aphid. Ecology 63: 972–981.CrossRefGoogle Scholar
  22. 22.
    MOONEY, H.A., C. CHU. 1974. Seasonal carbon allocation in Heteromeles arbutifolia, a California evergreen shrub. Oecologia 49: 50–55.Google Scholar
  23. 23.
    CHEW, F.S., J.E. RODMAN. 1979. Plant resources for chemical defense. In: G.A. Rosenthal, D.H. Janzen, eds., op. cit. Reference 10, pp. 271–307.Google Scholar
  24. 24.
    McKEY, D. 1979. The distribution of secondary compounds within plants. In: G.A. Rosenthal, D.H. Janzen, eds., op. cit. Reference 10, pp. 56–133.Google Scholar
  25. 25.
    CAMPBELL, B.C., S.S. DUFFEY. 1979. Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control. Science 205: 700–702.ADSCrossRefGoogle Scholar
  26. 26.
    VINSON, S.B. 1975. Biochemical coevolution between parasitoids and their hosts. In: Evolutionary Strategies of Parasitic Insects and Mites. ( P.W. Price, ed.), Plenum Press, New York, pp. 14–48.CrossRefGoogle Scholar
  27. 27.
    VINSON, S.B. 1976. Host selection by insect parasitoids. Annu. Rev. Entomol. 21: 109–133.CrossRefGoogle Scholar
  28. 28.
    VINSON, S.B. 1977. Behavioral chemicals in the augmentation of natural enemies. In: Biological Control by Augmentation of Natural Enemies. ( R.L. Ridgway, S.B. Vinson, eds.), Plenum Press, New York, pp. 237–279.CrossRefGoogle Scholar
  29. 29.
    VINSON, S.B. 1981. Habitat location. In: Semiochemicals. Their Role in Pest Control. ( D.A. Nordlund, R.L. Jones, W.J. Lewis, eds.), John Wiley and Sons, Inc., New York, pp. 51–78.Google Scholar
  30. 30.
    PRICE, P.W. 1981. Relevance of ecological concepts to practical biological control. In: BARC Symposium V. Biological Control in Crop Protection, Allanheld, Osmun, Publications, Totowa, New Jersey, pp. 3–19.Google Scholar
  31. 31.
    CAPINERA, J.L., P. BARBOSA. 1976. Dispersal of first-instar gypsy moth larvae in relation to population quality. Oecologia 26: 55–60.CrossRefGoogle Scholar
  32. 32.
    CAPINERA, J.L., P. BARBOSA. 1977. Influence of natural diets and density on gypsy moth egg mass characteristics. Can. Entomol. 101: 1313–1318.CrossRefGoogle Scholar
  33. 33.
    BARBOSA, P., J. GREENBLATT, W. WITHERS, W. CRANSHAW, E. HARRINGTON. 1979. Host plant preferences and their induction in larval of the gypsy moths, Lymantria dispar. Entomol. Exp. Appl. 26: 180–188.CrossRefGoogle Scholar
  34. 34.
    BARBOSA, P., J.L. CAPINERA. 1977. The influence of food type in the developmental structure of laboratory populations of the gypsy moth, Porthetria dispar L. Can. J. Zool. 55: 1424–1429.CrossRefGoogle Scholar
  35. 35.
    BARBOSA, P., J.L. CAPINERA. 1978. Population quality, dispersal and numerical change in the gypsy moth, Lymantria dispar. Oecologia 36: 203–209.CrossRefGoogle Scholar
  36. 36.
    BARBOSA, P. 1978. Host plant exploitation by the gypsy moth, Lymantria dispar L. Entomol. Exp. Appl. 24: 228–237.CrossRefGoogle Scholar
  37. 37.
    BARBOSA, P., J. GREENBLATT. 1979. Suitability, digestibility and assimilation of various host plants of the gypsy moth, Lymantria dispar L. Oecologia 43: 111–119.CrossRefGoogle Scholar
  38. 38.
    BARBOSA, P., W. CRANSHAW, J.A. GREENBLATT. 1981. Influence of food quality on polymorphic dispersal behaviors in the gypsy moth, Lymantria dispar. Can. J. Zool. 59: 293–297.CrossRefGoogle Scholar
  39. 39.
    GREENBLATT, J.A., P. BARBOSA. 1981. Effects of host’s diet on two pupal parasitoids of the gypsy moth: Brachymeria intermedia (Nees) and Coccygomimus turionellae (L.). J. Appl. Ecol. 18: 1–10.CrossRefGoogle Scholar
  40. 40.
    GREENBLATT, J.A., P. BARBOSA, M.E. MONTGOMERY. 1982. Host’s diet effects on nitrogen utilization efficiency for two parasitoid species, Brachymeria intermedia and Coccygomimus turionellae. Physiol. Entomol. 7: 263–267.CrossRefGoogle Scholar
  41. 41.
    FLANDERS, S.E. 1942. Abortive development in parasitic Hymenoptera, induced by the food plant of the insect host. J. Econ. Entomol. 35: 834–835.Google Scholar
  42. 42.
    LANGE, R., J.F. BRONSKILL. 1964. Reactions of Musca domestica to parasitism by Aphaereta pallipes with special reference to host diet and parasitoid toxin. Z.f. Parasit. 25: 193–210.Google Scholar
  43. 43.
    PIMENTEL, D. 1966. Wasp parasite (Nasionia vitripennis) survival on its house fly host (Musca domestica) reared on various foods. Annu. Entomol. Soc. Amer. 59: 1031–1038.Google Scholar
  44. 44.
    CHENG, L. 1970. Timing of attack by Lypha dubia Fall. (Diptera: Tachinidae) on the winter moth, Operophthera brumata (Lepidoptera: Geometridae) as a factor affecting parasite success. J. Anim. Ecol. 39: 313–320.CrossRefGoogle Scholar
  45. 45.
    NARAYANAN, E.S., B.R. SUBBA RAO. 1955. Studies in insect parasitism I-III. The effects of different hosts on the physiology, on the development and behaviour and on the sex ratio of Microbracon gelechiae Ashmead (Hymenoptera: Braconidae). Beit. Entomol. 5: 36–60.Google Scholar
  46. 46.
    SMITH, J.M. 1957. Effects of the food of California red scale, Aonidiella aurantii (Mask.) on reproduction of its hymenopterous parasites. Can. Entomol. 89: 219–230.CrossRefGoogle Scholar
  47. 47.
    JONES, D.A., J. PARSONS, M. ROTHSCHILD. 1962. Release of hydrocyanic acid from crushed tissues of all stages in the life cycle of species of the Zygaeninae (Lepidoptera). Nature 193: 52–53.ADSCrossRefGoogle Scholar
  48. 48.
    REICHSTEIN, T., J. VON EUW, J.A. PARSONS, M. ROTHSCHILD. 1968. Heart poisons in the monarch butterfly. Science 161: 861–866.ADSCrossRefGoogle Scholar
  49. 49.
    ALTAHTAWY, M.M., S.M. 1W1MAD, E.M. HEGAZI. 1976. Studies on the dependence of Microplitis rufiventris Kok. (Hym., Braconidae) parasitizing Spodoptera littoralis (Boisd.) on own food as well as on food of its host. Z. Ang. Entomol. 83: 3–13.Google Scholar
  50. 50.
    ROTHSCHILD, M., G. VALADON, R. MUMMERY. 1977. Carotenoids of the pupae of the large white butterfly (Pieris brassicae) and the small white butterfly (Pieris rapae). J. Zool. 181: 323–339.CrossRefGoogle Scholar
  51. 51.
    SMITH, D.A.S. 1978. Cardiac glycosides in Danaus chrysippus (L.) provide some protection against an insect parasitoid. Experientia 34: 844–846.CrossRefGoogle Scholar
  52. 52.
    BENN, M., J. DeGRAVE, C. GNANASUNDERAM, R. HUTCHINS. 1979. Host-plant pyrrolizidine alkaloids in Nyctemera annulata Boisd: their persistence through the life cycle and transfer to a parasite. Experientia 35: 731–732.CrossRefGoogle Scholar
  53. 53.
    ZOHDY, N. 1976. On the effect of the food of Myzus persicae Sulz. on the hymenopterous parasite, Aphelinus asychis Walker. Oecologia 26: 185–191.CrossRefGoogle Scholar
  54. 54.
    MORGAN, A.C. 1910. Observations recorded at the 236th regular meeting of the Entomological Society of Washington. Proc. Entomol. Soc. Wash. 12: 72.Google Scholar
  55. 55.
    GILMORE, J.U. 1938. Observations on the hornworms attacking tobacco in Tennessee and Kentucky. J. Econ. Entomol. 31: 706–712.Google Scholar
  56. 56.
    GILMORE, J.U. 1938. Notes on Apanteles congregatus (Say) as a parasite in tobacco hornworms. J. Econ. Entomol. 31: 712–715.Google Scholar
  57. 57.
    THURSTON, R., P.M. FOX. 1972. Inhibition by nicotine of emergence of Apanteles congregatus from its host, the tobacco hornworm. Annu. Entomol. Soc. Amer. 65: 547–550.Google Scholar
  58. 58.
    CAMPBELL, B.C., S.S. DUFFEY. 1981. Alleviation of a-tomatine-induced toxicity to the parasitoid, Hyposoter exiguae by phytosterols in the diet of the host Heliothis zea. J. Chem. Ecol. 7: 927–946.CrossRefGoogle Scholar
  59. 59.
    SELF, L.S., F.E. GUTHRIE, E. HODGSON. 1964. Adaptations of tobacco hornworms to the ingestion of nicotine. J. Insect Physiol. 10: 907–914.CrossRefGoogle Scholar
  60. 60.
    STEINHAUS, E.A., J.P. DINEEN. 1960. Observations on the role of stress in a granulosis of the variegated cutworm. J. Insect Pathol. 2: 55–65.Google Scholar
  61. 61.
    SMITH, K.M. 1976. Virus-Insect Relationships. Longman Group Limited Publishers, London, 291 pp.Google Scholar
  62. 62.
    HARBORNE, J.B. 1982. Introduction to Ecological Chemistry. 2nd Edition, Academic Press, New York, 278 pp.Google Scholar
  63. 63.
    TOPPS, J.H., R.L. WAIN. 1957. Fungistatic properties of leaf exudates. Nature 179: 652–653.ADSCrossRefGoogle Scholar
  64. 64.
    RANGASWAMI, G., A. BALASUBRAMANIAN. 1963. Release of hydrocyanic acid by sorghum roots and its influence on the rhizosphere microflora and plant pathogen fungi. Ind. J. Exp. Biol. 1: 215–217.Google Scholar
  65. 65.
    SCHLOSSER, E. 1976. Role of saponins in antifungal resistance. VII. Significance of tomatine in species-specific resistance of tomato fruits against fruit rotting fungi. Meded. Fac. Landbouwwet. Ryksuniv. Gent. 41: 499–503.Google Scholar
  66. 66.
    IRVING, G.W., T.D. FONTAINE, S.P. DOOLITTLE. 1945. Lycopersicin, a fungistatic agent from the tomato plant. Science 102: 9–11.ADSCrossRefGoogle Scholar
  67. 67.
    MOHANAKUMARAN, N., J.C. GILBERT, I.W. BUDDENHAGEN. 1969. Relationship between tomatine and bacterial wilt resistance in tomato. Phytopathology 59: 14.Google Scholar
  68. 68.
    SINDEN, S.L., J.M. SCHALK, A.K. STONER. 1978. Effects of daylength and maturity of tomato plants on tomatine content and resistance to the Colorado potato beetle. J. Amer. Soc. Hort. Sci. 103: 596–600.Google Scholar
  69. 69.
    MITSCHER, L.A., R.P. LEU, M.S. BATHALA, W.N. WU, J.L. BEAL, R. WHITE. 1972. Antimicrobial agents from higher plants. I. Introduction, rationale and methodology. Lloydia. 35: 157–166.Google Scholar
  70. 70.
    AFIFY, VON A.M., A.I. MERDAN. 1969. Reaktionsunterschiede von drei Noctuiden-Arten bei bestimmten Bacilluspräparaten in Abhängigkeit von der Nahrung and Art der Behandlung. Anz. Schädlingskde. u. Pflanzenschutz 42: 102–104.Google Scholar
  71. 71.
    MERDAN, A., H. ABDEL-RAHMAN, A. SOLIMAN. 1975. On the influence of host-plants on insect resistance to bacterial diseases. Z. Ang. Entomol. 78: 280–285.Google Scholar
  72. 72.
    SMIRNOFF, W.A., P.M. HUTCHINSON. 1965. Bacteriostatic and bacteriocidal effects of extracts of foliage from various plant species on Bacillus thuringiensis var. thuringiensis Berliner. J. Invert. Pathol. 7: 273–280.CrossRefGoogle Scholar
  73. 73.
    KUSHNER, D.S., G.T. HARVEY. 1962. Antibacterial substances in leaves: their possible role in insect resistance to diseases. J. Insect Pathol. 4: 155–184.Google Scholar
  74. 74.
    MAKSYMIUK, B. 1970. Occurrence in nature of antibacterial substances in plants affecting Bacillus thuringiensis and other enterobacteria. J. Invert. Pathol. 15: 365–371.CrossRefGoogle Scholar
  75. 75.
    SMIRNOFF, W.A. 1972. Effects of volatile substances released by foliage of Abies balsamea. J. Invert. Pathol. 19: 32–35.CrossRefGoogle Scholar
  76. 76.
    HEDIN, P.A., O.H. LINDIG, P.P. SIKOROWSKI, M. WYATT. 1978. Suppressants of gut bacteria in the boll weevil from the cotton plant. J. Econ. Entomol. 71: 394–396.Google Scholar
  77. 77.
    JONES, C.G., J.R. ALDRICH, M.S. BLUM. 1981. Baldcypress allelochemicals and the inhibition of silkworm enteric microorganisms. Some ecological considerations. J. Chem. Ecol. 7: 103–114.CrossRefGoogle Scholar
  78. 78.
    JONES, C.G. 1984. Microorganisms as mediators of plant resource exploitation by insect herbivores. In: A New Ecology: Novel Approaches to Interactive Systems. (P.W. Price, C.N. Slobodchikoff, W.S. Gaud), John Wiley and Sons, Inc., New York, pp. 53–99.Google Scholar
  79. 79.
    IIZUKA, T., S. KOIKE, J. MIZUTANI. 1974. Antibacterial substances in feces of silkworm larvae reared on mulberry leaves. Agric. Biol. Chem. 38: 1549–1550.CrossRefGoogle Scholar
  80. 80.
    IIZUKA, T., S. KOIKE, J. MIZUTANI. 1975. Antibacterial activity of protocatechuic acid and p-hydroxybenzoic acid isolated from feces. J. Seric. Sci. 44: 125–130.Google Scholar
  81. 81.
    KOIKE, S., T. IIZUKA, J. MIZUTANI. 1979. Determination of caffeic acid in the digestive juice of silkworm larvae and its antibacterial activity against the pathogenic Streptococcus faecalis AD-4. Agric. Biol. Chem. 43: 1727–1731.CrossRefGoogle Scholar
  82. 82.
    IIZUKA, T. 1983. Studies on the bacterial flora in the midgut and on the antibacterial activity in the digestive juice of larvae of the silkworm, Bombyx mori L. Sericologia 23: 227–244.Google Scholar
  83. 83.
    SMELYANETS, V.P. 1977. Mechanisms of plant resistance in scotch pine (Pinus sylvestris). 4. Influence of food quality on physiological state of pine pests (trophic preferendum). Z. Ang. Entomol. 84: 232–241.CrossRefGoogle Scholar
  84. 84.
    HAYASHIYA, K. 1978. Red fluorescent protein in the digestive juice of the silkworm larvae fed on host plant mulberry leaves. Entomol. Exp. Appl. 24: 228–236.CrossRefGoogle Scholar
  85. 85.
    KUNIMI, Y., H. ARUGA. 1974. Susceptibility to infection with nuclear and cytoplasmic polyhedrosis virus of the fall webworm, Hyphantria cunea Drury reared in several artificial diets. Jap. J. App. Entomol. Zool. 18: 1–4.CrossRefGoogle Scholar
  86. 86.
    ROSSITER, M.A. 1981. Factors contributing to host range extension in the gypsy moth, Lymantria dispar. Ph.D. Dissertation. State University of New York.Google Scholar
  87. 87.
    FRINGS, H., E. GOLDBERG, J.C. ARENTZEN. 1948. Antibacterial action of the blood of the large milkweed bug. Science 108: 689–690.ADSCrossRefGoogle Scholar
  88. 88.
    BERENBAUM, M.R. 1983. Effects of tannins on growth and digestion in two species of papilionids. Entomol. Exp. Appl. 34: 245–250.CrossRefGoogle Scholar
  89. 89.
    HAGEN, K.S. 1962. Biology and ecology of predaceous Coccinellidae. Annu. Rev. Entomol. 7: 289–326.CrossRefGoogle Scholar
  90. 90.
    PASTEELS, J.M. 1978. Apterous and brachypterous coccinellids at the end of the food chain, Cionura erecta (Ascelepiadaceae) Aphis nerii. Entomol. Exp. Appl. 24: 579–584.CrossRefGoogle Scholar
  91. 91.
    ROTHSCHILD, M., J. VON EUW, T. REICHSTEIN. 1973. Cardiac glycosides in a scale insect (Aspidiotus), a ladybird (Coccinella) and a lacewing (Chrysopa). J. Entomol. 48: 89–90.Google Scholar
  92. 92.
    SELF, L.S., F.E. GUTHRIE, E. HODGSON. 1964. Adaptation of tobacco hornworms to the ingestion of nicotine. J. Insect Physiol. 10: 907–914.CrossRefGoogle Scholar
  93. 93.
    SELF, L.S., F.E. GUTHRIE, E. HODGSON. 1964. Metabolism of nicotine by tobacco feeding insects. Nature 204: 300–301.ADSCrossRefGoogle Scholar
  94. 94.
    ROTHSCHILD, M., J. VON EUW, T. REICHSTEIN. 1970. Cardiac glycosides in the oleander aphid Aphis nerii. J. Insect Physiol. 16: 1141–1145.CrossRefGoogle Scholar
  95. 95.
    JONES, F.M. 1932. Insect coloration and relative acceptability of insects to birds. Trans. R. Entomol. Soc. 80: 345–385.CrossRefGoogle Scholar
  96. 96.
    DUFFEY, S.S. 1970. Cardiac glycosides and distastefulness: some observations on the palatability spectrum of butterflies. Science 169: 78–79.ADSCrossRefGoogle Scholar
  97. 97.
    URGUHART, F.A. 1960. The Monarch Butterfly. Univ. of Toronto Press, Toronto, Canada.Google Scholar
  98. 98.
    BERENBAUM, M.R. 1984. Mantids and milkweed bugs: efficacy of aposematic coloration against invertebrate predators. Amer. Midl. Nat. 111: 64–68.CrossRefGoogle Scholar
  99. 99.
    ARTHUR, A.P. 1981. Host acceptance by parasitoids. In: D.A. Nordlund, R.L. Jones, W.J. Lewis, eds., op. cit. Reference 29, pp. 97–120.Google Scholar
  100. 100.
    ELZEN, G.W., H.J. WILLIAMS, S.B. VINSON. 1983. Response by the parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae) to chemicals (Synonomes) in Plants: implications for host habitat location. Environ. Entomol. 12: 1873–1877.Google Scholar
  101. 101.
    ROSENTHAL, G.A., D.H. JANZEN, D.L. DAHLMAN. 1977. Degradation and detoxification of canavanine by a specialized seed predator. Science 196: 658–660.ADSCrossRefGoogle Scholar
  102. 102.
    BERNAYS, E.A., S. WOODHEAD. 1982. Plant phenols utilized as nutrients by a phytophagous insect. Science 216: 201–203.ADSCrossRefGoogle Scholar
  103. 103.
    SCHULTZ, J.C. 1983. Impact of variable plant defensive chemistry on susceptibility of insects to natural enemies. In: Plant Resistance to Insects. ( P.A. Hedin, ed.), Amer. Chem. Soc., Washington, D.C., pp. 37–54.CrossRefGoogle Scholar
  104. 104.
    BARBOSA, P., J.A. SAUNDERS, M. WALDVOGEL. 1982. Plant mediated variation in herbivore suitability and parasitoid fitness. In op. cit. Reference 13, pp. 63–71.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Pedro Barbosa
    • 1
  • James A. Saunders
    • 2
  1. 1.Department of EntomologyUniversity of MarylandCollege ParkUSA
  2. 2.Plant Genetics and Germplasm Institute Tobacco LaboratoryU.S.D.A., A.R.S.BeltsvilleUSA

Personalised recommendations