Olfaction in Central Neural and Neuroendocrine Systems: Integrative Review of Olfactory Representations and Interrelations

  • W. B. Quay


The ultimate significance of chemical signals resides within the central nervous system. For olfactory signals this has meant classically the rhinencephalon, or “olfactory brain”. However, it is increasingly demonstrated that the “olfactory brain” has many other neural and functionally important connections. Therefore the relatively narrow olfactory connotation of “rhinencephalon” is being supplanted by the descriptive designation limbic lobe, or better, limbic system. This lobe or system represents phylogenetically older cortex that borders (limbic) the brainstem, does not have or pass through the 6-layered structural pattern typifying the isocortex, and has major functional relations with a diverse array of relatively primitive physiological and behavioral actions. Many of these actions or responses are considered emotional or emotion-related, from our not unbiased human perspective (Papez, 1937; Pribram and Kruger, 1954; MacLean, 1959, 1960; Bargmann and Schadé, 1963; Adey and Tokizane, 1967; Yutzey et al., 1967; Isaacson, 1974; Wenzel, 1974; Gloor, 1975).


Olfactory Bulb Pineal Gland Neuroendocrine System Olfactory Organ Main Olfactory Bulb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey, W. R., and Tokizane, T., 1967, “Structure and Function of the Limbic System,” Prog. Brain Res., 27: 1.CrossRefGoogle Scholar
  2. Bargmann, W., and Schad, J. P., 1963, “The Rhinencephalon and Related Structures, Prog. Brain Res. 3:1.Google Scholar
  3. Beresford, W. A., 1965, A discussion on retrograde changes in nerve fibers, Prog. Brain Res., 14: 33.CrossRefGoogle Scholar
  4. Blask, D. E., and Nodelman, J. L., 1980, An interaction between the pineal gland and olfactory deprivation in potentiating the effects of melatonin on gonads, accessory sex organs, and prolactin in male rats. J. Neurosci. Res., 5: 129.CrossRefGoogle Scholar
  5. Bleier, R., 1969, Retrograde transsynaptic cellular degeneration in mammillary and ventral tegmental nuclei following limbic decortication in rabbits of various ages, Brain Res., 15: 365.ADSCrossRefGoogle Scholar
  6. Broadwell, R. D., 1975, Olfactory relationships of the telencephalon and diencephalon in the rabbit. I. An autoradiographic study of the efferent connections of the main and accessory olfactory bulbs, J. Comp. Neurol., 163: 329.CrossRefGoogle Scholar
  7. Dafny, J., McClung, R., and Strada, S. J., 1975, Neurophysiological properties of the pineal body. 1. Field potentials, Life Sci., 16: 611.Google Scholar
  8. Davies, B. J., and Macrides, F., 1981, The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: An autoradiographic study, J. Comp. Neurol., 203: 475.CrossRefGoogle Scholar
  9. Däcke, F., Lemke, M., and Okrasa, R., 1976, Studies on the puberty-controlling function of the mediocortical amygdala in the immature female rat, Neuroendocrinology, 20: 166.CrossRefGoogle Scholar
  10. Doty, R. W., 1977, Behavioral effects of deafferentiation, Ann. New York Acad. Sci., 290: 366.ADSCrossRefGoogle Scholar
  11. Edinger, H. M., Siegel, A., and Troiano, R., 1975, Effect of stimulation of prefrontal cortex and amygdala on diencephalic neurons, Brain Res., 97: 17.CrossRefGoogle Scholar
  12. Elwers, M., and Critchlow, V., 1960, Precocious ovarian stimulation following hypothalamic and amygdaloid lesions in rats, Am. J. Physiol., 198: 381.Google Scholar
  13. Gloor, P., 1975, Physiology of the limbic system, Adv. Neurol., 2: 1.Google Scholar
  14. Herrick, C. J., 1933, The functions of the olfactory parts of the cerebral cortex, Proc. Nat. Acad. Sci., 19: 7.ADSCrossRefGoogle Scholar
  15. Huber, G. C., and Guild, S. R., 1913, Observations on the peripheral distribution of the nervus terminalis in mammalia, Anat. Rec., 7: 253.CrossRefGoogle Scholar
  16. Isaacson, R. L., 1974, “The Limbic System,” Plenum, New York and London.Google Scholar
  17. Kappers, J. A., and Pévet, P., 1979, “The Pineal Gland of Vertebrates Including Man,” Prog. Brain Res., 52: 3.CrossRefGoogle Scholar
  18. Kling, A., 1964, Effects of rhinencephalic lesions on endocrine and somatic development in the rat, Am. J. Physiol., 206: 1395.Google Scholar
  19. Korf, H.-W., and Wagner, U., 1980, Evidence for a nervous connection between the brain and the pineal organ in the guinea pig, Cell Tissue Res., 209: 505.CrossRefGoogle Scholar
  20. Larsell, 0., 1950, The nervus terminalis, Ann. Otol. Rhinol. Laryngol., 59: 414.Google Scholar
  21. Le Gros Clark, W. E., 1957, Inquiries into the anatomical basis of olfactory discrimination, Proc. Roy. Soc. B, 146: 299.ADSCrossRefGoogle Scholar
  22. Leonard, B. E., and Tuite, M., 1981, Anatomical, physiological, and behavioral aspects of olfactory bulbectomy in the rat, Internat. Rev. Neurobiol., 22: 251.CrossRefGoogle Scholar
  23. MacLean, P. D., 1959, The limbic system with respect to two basic life principles, in: “The Central Nervous System and Behavior,” M. A. B. Brazier, ed., Josiah Macy, Jr., Foundation, New York.Google Scholar
  24. MacLean, P. D., 1960, Psychosomatics, in: “Handbook of Physiology, Sec. 1: Neurophysiology, vol. III,” J. Field, H. W. Magoun, and V. E. Hall ed., Am. Physiol. Soc., Washington, D. C.Google Scholar
  25. Macrides, F., Davis, B. J., Youngs, W. M., Nadi, N. S., and Margolis, F. L., 1981, Cholinergic and catecholaminergic afferents to the olfactory bulb in the hamster: A neuroanatomical, biochemical, and histochemical investigation, J. Comp. Neurol., 203: 495.CrossRefGoogle Scholar
  26. Mascitti, T. A., and Ortega, S. N., 1969, Efferent connections of the olfactory bulb in the cat, an experimental study with silver impregnation methods, J. Comp. Neurol., 127: 121.CrossRefGoogle Scholar
  27. Matthews, M. R., and Powell, T. P. S., 1962, Some observations on transneuronal cell degeneration in the olfactory bulb of the rabbit, J. Anat., 96: 89.Google Scholar
  28. McClung, R., and Dafny, N., 1975, Neurophysiological properties of the pineal body. 2. Single unit recording, Life Sci., 16: 621.Google Scholar
  29. Meyer, R. P., 1981, Central connections of the olfactory bulb in the american oppossum (Didelphys virginiana): A light microscopic degeneration study, Anat. Rec., 201: 141.CrossRefGoogle Scholar
  30. Miline, R., Deceverski, V., and Krstic, R., 1963, Influence d’excitations olfactives sur le système habénulo-épiphysaire, Ann. Endocrinol., 24: 377.Google Scholar
  31. Moulton, D. G., and Tucker, D., 1964, Electrophysiology of the olfactory system, Ann. New York Acad. Sci., 116: 380.ADSCrossRefGoogle Scholar
  32. Nielsen, J. T., and Muller, M., 1975, Nervous connections between the brain and the pineal gland in the cat (Felis catus) and the monkey (Cercopithecus aethiops), Cell Tissue Res., 161: 293.CrossRefGoogle Scholar
  33. Ono, T., and Oomura, Y., 1975, Excitatory control of hypothalamic ventromedial nucleus by basolateral amygdala in rats, Pharmacol. Biochem. Behay., 3 (Suppl. 1): 37.Google Scholar
  34. Papez, J. W., 1937, A proposed mechanism for emotion, Arch. Neurol. Psychiat., 38: 725.CrossRefGoogle Scholar
  35. Pazo, J. H., 1981, Electrophysiological study of evoked electrical activity in the pineal gland, J. Neural Transmission, 52: 137.CrossRefGoogle Scholar
  36. Pfister, A., Muller, J., Leffray, P., Guerillot, C., Vendrely, E., and Lage, C. D., 1978, Investigations on a possible extraorthosympathetic innervation of the pineal in rat and hamster, J. Neural Transmission, (Suppl.) 13: 390.Google Scholar
  37. Pieper, D. R., and Gala, R. R., 1979, Influence of the pineal gland, olfactory bulbs and photoperiod on surges of plasma prolactin in the female rat, J. Endocr., 82: 279.CrossRefGoogle Scholar
  38. Powell, T. P. S., Cowan, W. M., and Raisman, G., 1965, The central olfactory connections, J. Anat., 99: 791.Google Scholar
  39. Pribram, K. H., and Kruger, L., 1954, Functions of the “olfactory brain,” Ann. New York Acad. Sci., 58: 109.ADSCrossRefGoogle Scholar
  40. Price, J. L., and Powell, T. P. S., 1970, An experimental study of the origin and course of the centrifugal fibres to the olfactory bulb in the rat, J. Anat., 107: 215.Google Scholar
  41. Price, J. L., and Powell, T. P. S., 1971, Certain observations on the olfactory pathway, J. Anat., 110: 105.Google Scholar
  42. Quay, W. B., 1974, “Pineal Chemistry in Cellular and Physiological Mechanisms,” Charles C Thomas, Springfield.Google Scholar
  43. Reiter, R. J., 1969, Antigonadotropic activity of the pineal gland in blinded anosmic female rats, Fed. Proc., 28: 318.Google Scholar
  44. Reiter, R. J., and Ellison, N. M., 1970, Delayed puberty in blinded anosmic female rats: Role of the pineal gland, Biol. Reprod., 2: 216.CrossRefGoogle Scholar
  45. Reiter, R. J., Petterborg, L. J., Trakulrungsi, C., and Trakulrungsi, W. K., 1980, Surgical removal of the olfactory bulbs increases sensitivity of the reproductive system of female rats to the inhibitory effects of late afternoon melatonin injections, J. Exp. Zool., 212: 47.CrossRefGoogle Scholar
  46. Reiter, R. J., Sorrentino, S., Jr., Ralph, C. L., Lynch, H. J., Mull, D., and Jarrow, E., 1971, Some endocrine effects of blinding and anosmia in adult male rats with observations on pineal melatonin, Endocrinology, 88: 895.CrossRefGoogle Scholar
  47. Relkin, R., 1971, Relative efficacy of pinealectomy, hypothalamic and amygdaloid lesions in advancing puberty, Endocrinology, 88: 415.CrossRefGoogle Scholar
  48. Rinnekleiv, 0. K., and McCann, S. M., 1975a, Effects of pinealectomy, anosmia and blinding alone or in combination on gonadotropin secretion and pituitary and target gland weight in intact and castrated male rats, Neuroendocrinology, 19: 97.CrossRefGoogle Scholar
  49. Rinnekleiv, O. K., and McCann, S. M., 1975b, Effects of pinealectomy, anosmia and blinding on serum and pituitary prolactin in intact and castrated male rats, Neuroendocrinology, 17: 340.CrossRefGoogle Scholar
  50. Rinnekleiv, O. K., and Miller, M., 1979, Brain-pineal nervous connections in the rat: An ultrastructure study following habenular lesion, Exp. Brain Res., 37: 551.Google Scholar
  51. Rinnekleiv, O. K., Kelly, M. J., and Wuttke, W., 1980, Single unit recordings in the rat pineal gland: Evidence for habenulopineal neural connections, Exp. Brain Res., 39: 187.Google Scholar
  52. Scalia, F., 1968, A review of recent experimental studies on the distribution of the olfactory tracts in mammals, Brain Behay. Evol., 1: 101.CrossRefGoogle Scholar
  53. Scalia, F., and Winans, S. S., 1975, The differential projections of the olfactory bulb and accessory olfactory bulb in mammals, J. Comp. Neurol., 161: 31.CrossRefGoogle Scholar
  54. Schwanzel-Fukuda, M., and Silverman, A.-J., 1980, LHRH neurons in the nervus terminalis of the guinea pig, Anat. Rec., 196: 168A.Google Scholar
  55. Skeen, L. C., and Hall, W. C., 1977, Efferent projections of the main and accessory olfactory bulb in the tree shrew (Tupaia gli$), J. Comp. Neurol., 172: 1.CrossRefGoogle Scholar
  56. Sorrentino, S., Jr., Reiter, R. J., and Schalch, D. S., 1971a, Pineal regulation of growth hormone synthesis and release in blinded and blinded-anosmic male rats, Neuroendocrinology, 7: 210.CrossRefGoogle Scholar
  57. Sorrentino, S., Jr., Reiter, R. J., Schalch, D. S., and Donofrio, R. J., 1971b, Role of the pineal gland in growth restraint of adult male rats by light and smell deprivation, Neuroendocrinology, 8: 116.CrossRefGoogle Scholar
  58. Stone, H., Williams, B., and Carregal, E. J. A., 1968, The role of the trigeminal nerve in olfaction, Exp. Neurol., 21: 11.CrossRefGoogle Scholar
  59. Tucker, D., 1963, Olfactory, vomeronasal and trigeminal receptor responses to odorants, in: “Olfaction and Taste,” Y Zotterman, ed., Pergamon, Oxford.Google Scholar
  60. Velasco, M. E., and Taleisnik, S., 1969, Release of gonadotropins induced by amygdaloid stimulation in the rat, Endocrinology, 84: 132.CrossRefGoogle Scholar
  61. Wenzel, B. M., 1974, The olfactory system and behavior, in: “Limbic and Autonomic Nervous Systems Research,” L. V. DiCara, ed., Plenum, New York.Google Scholar
  62. Wenzel, B. M., and Ziegler, H. P., 1977, Introduction, Ann. New York Acad. Sci., 290: 1.ADSCrossRefGoogle Scholar
  63. White, L. E., Jr., 1965, Olfactory bulb projections of the rat, Anat. Rec., 152: 465.CrossRefGoogle Scholar
  64. Wright, J. W., and Harding, J. W., 1982, Recovery of olfactory function after bilateral bulbectomy, Science, 216: 322.ADSCrossRefGoogle Scholar
  65. Yutzey, D. A., Meyer, D. R., and Meyer, P. M., 1967, Effects of simultaneous septal and neo or limbic-cortical lesions upon emotionality in the rat, Brain Res., 5: 452.CrossRefGoogle Scholar
  66. Zarrow, M. X., Estes, S. A., Debenberg, V. H., and Clark, J. H., 1970, Pheromonal facilitation of ovulation in the immature mouse, J. Reprod. Fert., 23: 357.CrossRefGoogle Scholar
  67. Zbrozyna, A. W., 1963, The anatomical basis of the patterns of autonomic and behavioural response effected vis the amygdala, Prog. Brain Res., 3: 50.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • W. B. Quay
    • 1
  1. 1.Neuroendocrine Laboratory, Department of AnatomyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations