Synchronizing Ovarian and Birth Cycles by Female Pheromones

  • Martha K. McClintock


The timing of ovulation can be altered by olfactory signals from other females in the social environment. In the rat, olfactory communication results in the synchronization of estrous cycles within a female social group: the majority of females are likely to be at the same phase of their estrous cycles on the same day (McClintock, 1978; McClintock, 1981). This may be a mechanism to coordinate fertility and infant care with an appropriate social and physical environment (McClintock, 1981; McClintock, In press)


Corpus Luteum Estrous Cycle Follicular Development Ovarian Cycle Vaginal Smear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmann, J., Altmann, S., Hausfater, G. and McCuskey, S. A. 1977. Life history of yellow baboons: physical development, reproductive parameters, and infant mortality. Primates 18: 315–330.CrossRefGoogle Scholar
  2. Altmann, J. In preparation. Synchronous menarche in baboons.Google Scholar
  3. Aron, C. 1973. Phéromones et regulation de la durde du cycle oestral chez la ratte. Arch. Anat. Embr. Norm. et Exp. 56: 209–216.Google Scholar
  4. Aschoff, J. 1960. Exogenous and endogenous components in circadian rhythms. Symp. Quant. Biol. 25: 11–28.CrossRefGoogle Scholar
  5. Beauchamp, G. K., Doty, R. L., Moulton, D. G. and Mugford, R. A. 1976. The pheromone concept in mammalian chemical communication: a critique. In: Mammalian OlfactionGoogle Scholar
  6. Reproductive Processes, and Behavior (R. L. Doty, ed.) pp. 144–160. Academic Press, New York.Google Scholar
  7. Best, E. N. 1975. Exploration of a menstrual cycle model. Simulation Today 25: 117–120.CrossRefGoogle Scholar
  8. Bingel, A. S. and Schwartz, N. B. 1969. Pituitary LH content and reproductive tract changes during the mouse oestrus cycle. J. Reprod. Fertil. 19: 215–222.CrossRefGoogle Scholar
  9. Buck, J. and Buck, E. 1968. Mechanism of rhythmic synchronous flashing of fireflies. Science 159: 1319–1327.ADSCrossRefGoogle Scholar
  10. Buffler, G. and Roser, S. 1974. New data concerning the role played by progesterone in the control of follicular growth in the rat. Acta. Endocr. 75: 569–578.Google Scholar
  11. Butcher, R. L., Collins, W. E. and Fugo, N. W. 1974. Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17 throughout the 4-day estrous cycle of the rat. Endocrinology 94: 1704–1708.CrossRefGoogle Scholar
  12. Campbell, A. 1964. The theoretical basis of synchronization by shifts in environmental conditions. In: Synchrony in Cell Division and Growth ( E. Zeuthen, ed.) pp. 469–484. Wiley, New York.Google Scholar
  13. Chateau, D., Roos, J. and Aron, C. 1972. Action de l’urine male ou femelle provenant de rats normaux ou castrés sur la durée du cycle oestral chez la ratte. C. R. Soc. Biol. 166: 1110–1113.Google Scholar
  14. Curry, J. J. 1971. Effects of estrogen on LH evolved potentials in the olfactory system of female rats. In: Influence of Hormones on the Nervous System (D. H. Ford, ed.)pp. 255–268. Krager, Basel.Google Scholar
  15. DeCoursey, P. 1961. Effect of light on the circadian activity rhythm of the flying squirrel, Glaucomysvolans. Z. vergl. Physiol. 44: 331–354.CrossRefGoogle Scholar
  16. Everett, J. W. 1948. Progesterone and estrogen in the experimental control of ovulation time and other features of the estrous cycle in the rat. Endocrinology 43: 389–405.CrossRefGoogle Scholar
  17. Everett, J. W. 1964. Preoptic stimulative lesions and ovulation in the rat: ‘thresholds’ and LH-release time in late diestrus and proestrus. In: Major Problems in Neuroendocrinology (E. Bajusz & G. Jasmin, ed.) pp. 346–366. Karger, Basel.Google Scholar
  18. Fagen, R. M. and Young, D. Y. 1978. Temporal patterns of behaviour: durations, intervals, latencies & sequences.. InGoogle Scholar
  19. Quantitative Ethology J. Wiley & Sons, New York. (P. N. Colgan, ed.) pp. 79–114.Google Scholar
  20. Gerall, A. A. and McCrady, D. E. 1970. Receptivity scores of female rats stimulated either manually or by males. J. Endocrinol. 46: 55–59.CrossRefGoogle Scholar
  21. Gurevich, B. Kh. 1967. Specific communications in plants on the basis of diurnal physiological rhythms. Dokl. (Proc.) Acad. Sci. USSR, Botanical Sec. 173: 46–48.Google Scholar
  22. Handelmann, G., Ravizza, R. and Ray, W. J. 1980. Social dominance determines estrous entrainment among female hamsters. Horm. Behay. 14: 107–115.CrossRefGoogle Scholar
  23. Heiligenberg, W. 1969. The effect of stimulus chirps on a cricket’s chirping (Acheta domesticus). Z. vergl. Physiologie. 65: 70–97.CrossRefGoogle Scholar
  24. Hoover, J. E. and Drickamer, L. C. 1979. Effects of urine from pregnant and lactating female house mice on oestrous cycles of adult females. J. Reprod. Fert. 55: 297–301.CrossRefGoogle Scholar
  25. Hoppensteadt, F. and Keller, J. B. 1976. Synchrony of periodical cicada emergences. Science 194: 335–336.ADSCrossRefGoogle Scholar
  26. Jalife, J. and Moe, G. K. 1979. Phasic effects of vagal stimulation of pacemaker activity of the isolated sinus node of the young cat. Circ. Res. 45: 595–608.CrossRefGoogle Scholar
  27. Johns, M. A. 1980. The role of the vomeronasal system in mammalian reproductive physiology. In: Chemical Signals in Vertebrates (D. Müller-Schwarze & R. M. Silverstein,eds.) pp. 341–364. Plenum Publishing Corp., New York.Google Scholar
  28. Kraeplin, G. 1973. Physiological rhythms in Saccharomyces cerevisiae populations. In: Biological and BiochemicalGoogle Scholar
  29. Oscillators (B. Chance, E. K. Pye, A. K. Ghosh & B. Hess, eds.) pp. 419–427. Academic Press, New York.Google Scholar
  30. Krehbiel, R. H. 1941. The effects of lactation on the implantation of ova of a concurrent pregnancy in the rat. Anat. Rec. 81: 43–63.CrossRefGoogle Scholar
  31. Krey, L. C., Tyrey, L. and Everett, J. W. 1973. The estrogen-induced advance in the cyclic LH surge in the rat: dependency on ovarian progesterone secretion. Endocrinology 93: 385–390.CrossRefGoogle Scholar
  32. Kübler, F. 1969. Wechselseitige Synchronisation der Blattbewegungen innerhalb einer Pflanze. Z. Pflanzenphysiol. Bd. 61: 310–313.Google Scholar
  33. Lamond, D. R. 1959. Effect of stimulation derived from other animals of the same species on oestrous cycles in mice. J. Endocrin. 18: 343–349.CrossRefGoogle Scholar
  34. Leon, M. and Moltz, H. 1971. Maternal pheromone: discrimination by preweaning albino rats. Physiol. Behay. 7: 265–267.CrossRefGoogle Scholar
  35. Long, J. A. and Evans, H. M. 1922. The oestrous cycle in the rat and its associated phenomena. Mem. Univ. California 6: 1–148.Google Scholar
  36. Malchow, D., Nanjundiah, V. and Gerisch, G. 1978. pH-oscillations in cell suspensions of Dictystelium discoideum: their relation to cyclic-AMP signals. J. Cell. Sci. 30: 319–330.Google Scholar
  37. Marinari, K. T. and Moltz, H. 1978. Serum prolactin levels and vaginal cyclicity in concaveated and lactating female rats. Physiol. Behay. 21: 525–528.CrossRefGoogle Scholar
  38. Marsden, H. M. and Bronson, F. H. 1965. The synchrony of oestrus in mice: relative roles of the male and female environments. J. Endocrin. 32: 313–319.CrossRefGoogle Scholar
  39. McClintock, M. K. 1971. Menstrual synchrony and suppression. Nature 229: 244–245.ADSCrossRefGoogle Scholar
  40. McClintock, M. K. 1978. Estrous synchrony and its mediation by airborne chemical communication (Rattus norvegicus). Horm. Behay. 10: 264–276.CrossRefGoogle Scholar
  41. McClintock, M. K. 1981. Social control of the ovarian cycle and the function of estrous synchrony. Amer. Zool. 21: 243–256.Google Scholar
  42. Naftolin, F., Brown-Grant, K. and Corker, C. S. 1972. Plasma and pituitary luteinizing hormone and peripheral plasma oestradiolGoogle Scholar
  43. McClintock, M. K. In press. Pheromonal regulation of the ovarian cycle: enhancement, suppression and synchrony. In: Pheromones and Reproduction in Mammals (J. G. Vandenbergh, ed.) Academic Press, New York.Google Scholar
  44. McClintock, M. K. In preparation. Modulation of the ovarian cycle and estrous synchrony by female chemosignals.Google Scholar
  45. McClintock, M. K. and Adler, N. T. 1978. Induction of persistent estrus by airborne chemical communication among female rats. Horm. Behay. 11: 414–418.CrossRefGoogle Scholar
  46. Morin, L., Fitzgerald, K. M. and Zucker, I. 1977. Estradiol shortens the period of hamster circadian rhythms. Science 196: 305–307.ADSCrossRefGoogle Scholar
  47. concentrations in the normal oestrous cycle of the rat and after experimental manipulation of the cycle. J. Endocrin. 53: 17–30.Google Scholar
  48. Nequin, L. G., Alvarez, J. and Schwartz, N. B. 1979. Measurement of serum steroid and gonadotropin levels and uterine and ovarian variables throughout 4 day and 5 day estrous cycles in the rat. Biol. Reprod. 20: 659–670.CrossRefGoogle Scholar
  49. Nikitovitch-Winer, M. E. and Everett, J. W. 1958. Comparative study of luteotropin secretion by hypophysial autotransplants in the rat. Effect of site and stages of the estrous cycle. Endocrinol. 62: 522–253.CrossRefGoogle Scholar
  50. Parkes, A. S. 1929. The functions of the corpus luteum. II. The experimental induction of plancentomata in the mouse. Proc. Roy. Soc. B. 104: 183–188.ADSCrossRefGoogle Scholar
  51. Payman, B. C. and Swanson, H. H. 1980. Social influence on sexual maturation and breeding in the female mongolian gerbil (Meriones unguiculatus). Anim. Behay. 28: 528–535.CrossRefGoogle Scholar
  52. Perkel, D. H., Schulman, J. H., Bullock, T. H., Moore, C. P. and Segundo, J. P. 1964. Pacemaker neurons: effects of regularly spaced synaptic input. Science 145: 61–63.ADSCrossRefGoogle Scholar
  53. Pietras, R. J. and Moulton, D. G. 1974. Hormonal influences on odor detection in rats: changes associated with the estrousGoogle Scholar
  54. cycle, pseudopregnancy, ovariectomy, and administration of testosterone propionate. Physiol. Behay. 12: 475–491.Google Scholar
  55. Rood, J. P. 1980. Mating relationships and breeding suppression in the dwarf mongoose. Anim. Behay. 28: 143–150.CrossRefGoogle Scholar
  56. Schwartz, N. B. 1964. Acute effects of ovariectomy on pituitary LH, uterine weight, and vaginal cornification. Am. J. Physiol. 207: 1251–1259.Google Scholar
  57. Schwartz, N. B. 1969. A model for the regulation of ovulation in the rat. Recent Prog. Horm. Res. 25: 1–55.Google Scholar
  58. Short, R. V. 1976. The evolution of human reproduction. Proc. R. Soc. Lond. B. 195: 3–24.ADSCrossRefGoogle Scholar
  59. Smith, M. S., Freeman, M. E. and Neill, J. D. 1975. The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin, and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96: 219–225.CrossRefGoogle Scholar
  60. Takewaki, K. 1949. Occurrence of pseudopregnancy in rats placed in vapor ammonia. P. Japan Acad. 25 (7): 38–39.Google Scholar
  61. van der Lee, S. and Boot, L. M. 1955. Spontaneous pseudopregnancy in mice. Acta. Physiol. Pharmacol. Neerlandica 4: 442–444.Google Scholar
  62. von Holst, E. 1969. Zur Verhaltenphysiologie bei Tieren und Menschen: Gesammelte Abhandlungen. Trans. R. Martin, The Behavioral Physioloy of Animals and Man. University of Miami Press, Coral Gables.Google Scholar
  63. von Meyenburg, H. K. 1973. Stable synchrony oscillations in continuous cultures of Saccharomyces cerevisiae under glucose limitation. In Biological and Biochemical Oscillators ( B. Chance, E. K. Pye, A. K. Ghosh & B. Hess, eds.) pp. 411–417. Academic Press, New York.Google Scholar
  64. Weick, R. F., Smith, E. R., Dominguez, R., Dhariwal, A. P. S. and Davidson, J. M. 1971. Mechanism of stimulatory feedback effect of estradiol benzoate on the pituitary. Endocrinology 88: 293–301.CrossRefGoogle Scholar
  65. Weizenbaum, F., McClintock, M. K. and Adler, N. 1977. Decreases in vaginal acyclicity of rats when housed with female hamsters. Horm. Behay. 8: 342–347.CrossRefGoogle Scholar
  66. Whitten, W. K. 1958. Modification of the oestrus cycle of the mouse by external stimuli associated with the male. J. Endocrin. 17: 307–313.CrossRefGoogle Scholar
  67. Whitten, W. K. 1959. Occurrence of anoestrus in mice caged in groups. J. Endocrin. 18: 102–107.CrossRefGoogle Scholar
  68. Winfree, A. T. 1967. Biological rhythms and the behavior of coupled oscillators. J. Theoret. Biol. 16: 15–42.CrossRefGoogle Scholar
  69. Winfree, A. T. 1980. The Geometry of Biological Time. Springer-Verlag, New York.MATHGoogle Scholar
  70. Woodside, B., Wilson, R., Chee, P. and Leon, M. 1981. Resource partitioning during reproduction in the Norway rat. Science 211: 76–77.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Martha K. McClintock
    • 1
  1. 1.Department of Behavioral SciencesThe University of ChicagoChicagoUSA

Personalised recommendations