Advertisement

Layered host lattices: structure, bonding, physical properties and chemical reactivity

  • Robert Schöllhorn
Part of the NATO ASI Series book series (NSSB, volume 172)

Abstract

The primary base for the description of a solid is its chemical composition in terms of the constituent elements and their relative proportions. For a more specific characterization it is necessary to establish the geometrical structure, to describe the quality of interaction between the constituent atoms (chemical bonding) and to determine the physical properties of the compound under consideration. Presently we are at a level of knowledge that gives access to a basic understanding of the mutual relationship between these static properties of solids for many systems. One additional quality of a system that is of utmost interest in chemistry represents a dynamic aspect: the reactivity of a given solid under defined conditions. In many respects, however, our knowledge on the correlation of structure, bonding and physical properties with the chemical reactivity is still rather unsatisfying. This is the reason, why certain simple systems which allow within certain limits the prediction of their reactivity on grounds of their basic properties have attracted particular interest. Among these are the so-called intercalation systems which are characterized by their topotactic reactivity, i.e. the structural integrity of the reacting solid is maintained in the course of the chemical process.

Keywords

Solid State Ionic Host Lattice Intercalation System Intercalation Compound Molybdenum Trioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Levy, ed., “Intercalated Layered Materials”, D. Reidel, Dordrecht (1979).Google Scholar
  2. 2.
    M.S. Whittingham and A.J. Jacobson, eds., “Intercalation Chemistry”, Academic Press, New York (1982).Google Scholar
  3. 3.
    R. Schöllhorn, in “Inclusion Compounds”, Vol. I, J.L. Atwood, J.E.D. Davies and D.D. Mac Nicol, eds., Academic Press, New York (1984), p. 249.Google Scholar
  4. 4.
    R. Schöllhorn, Angew. Chem. 92, 1015 (1980).CrossRefGoogle Scholar
  5. R. Schöllhorn, Angew. Chem. Int. Ed. Engl. 19, 983 (1980).CrossRefGoogle Scholar
  6. 5.
    A. Hérold, in “Intercalated Layered Materials”, F. Levy, ed., D. Reidel, Dordrecht (1979), p. 321.Google Scholar
  7. 6.
    J. Rouxel, in “Intercalated Layered Materials”, F. Levy, ed., D. Reidel, Dordrecht (1979), p. 201.CrossRefGoogle Scholar
  8. 7.
    J.C.W. Folmer and F. Jellinek, J. Less-Common Metals 76, 153 (1980).CrossRefGoogle Scholar
  9. 8.
    R. Schöllhorn, in “Physics of Intercalation Compounds”, L. Pietronero and E. Tosatti, eds., Springer Verlag, Berlin/New York (1981), p. 33.CrossRefGoogle Scholar
  10. 9.
    M.M. Schulte, Dissertation, University of Münster (1987).Google Scholar
  11. 10.
    N. Le Nagard, O. Gorochov and G. Collin, Mat. Res. Bull. 10, 1287 (1975).CrossRefGoogle Scholar
  12. 11.
    W. Paulus, M. Schulte and R. Schöllhorn, to be published.Google Scholar
  13. 12.
    B.W. Pfalzgraf, H. Spreckels, W. Paulus and R. Schöllhorn, J. Phys. F: Met. Phys. 17, 857 (1987).ADSCrossRefGoogle Scholar
  14. 13.
    P. Rathner, Dissertation, university of Münster (1986).Google Scholar
  15. 14.
    D.W. Murphy, J.N. Carides, F.J. Di Salvo, C. Cros and J.V. Waszak, Mat. Res. Bull. 12, 825 (1977).CrossRefGoogle Scholar
  16. 15.
    M.M. Thackeray, L.A. de Picciotto, W.I.F. David, P.G. Bruce and J.B. Goodenough, J. Solid State Chem. 67, 285 (1987).ADSCrossRefGoogle Scholar
  17. 16.
    C.F. van Bruggen, C. Haas and G.A. Wiegers, J. Solid State Chem. 27, 9 (1979).ADSCrossRefGoogle Scholar
  18. 17.
    C.F. van Bruggen, J.R. Bloembergen, A.J.A. Bos-Alberinck and G.A. Wiegers, J. Less-Common Metals 60, 259 (1978).CrossRefGoogle Scholar
  19. 18.
    R. Steffen and R. Schöllhorn, Solid State Ionics 22, 31 (1986).CrossRefGoogle Scholar
  20. 19.
    J. Rouxel, M. Danot and J. Bichon, Bull. Soc. Chim. Fr. 3930 (1971).Google Scholar
  21. 20.
    T. Hibma, J. Solid State Chem. 34, 97 (1980)ADSCrossRefGoogle Scholar
  22. T. Hibma, Physica 99 B, 136 (1980).Google Scholar
  23. 21.
    C. Riekel, E.G. Reznik and R. Schöllhorn, J. Solid State Chem. 34, 253 (1980).ADSCrossRefGoogle Scholar
  24. 22.
    G. Scholz and R. Frindt, Mat. Res. Bull. 15, 1703 (1980).CrossRefGoogle Scholar
  25. 23.
    A.G. Gerards, H. Roede, R.J. Haange, B.A. Bouekamp and G.A. Wiegers, Synth. Met. 10, 51 (1984).CrossRefGoogle Scholar
  26. 24.
    J. Schramke and R. Schöllhorn, Solid State Ionics 23, 197 (1987).CrossRefGoogle Scholar
  27. 25.
    J.E. Ford and J.D. Corbett, Inorg. Chem. 24, 4120 (1985).CrossRefGoogle Scholar
  28. 26.
    H. Meyer, A. Weiss and J.O. Besenhard, Mat. Res. Bull. 13, 913 (1978).CrossRefGoogle Scholar
  29. 27.
    G. Haidari, W. Paulus and R. Schöllhorn, to be published.Google Scholar
  30. 28.
    R. Schöllhorn, in “Intercalation Chemistry”, M.S. Whittingham and A.J. Jacobson, eds., Academic Press, New York (1982), p. 315.Google Scholar
  31. 29.
    R. Schöllhorn, in “Chemical Reactions in Organic and Inorganic Constrained Systems”, R. Setton, ed., D. Reidel, Dordrecht/Boston (1986), P.323.CrossRefGoogle Scholar
  32. 30.
    C. Ritter and R. Schöllhorn, Solid State Comm. 61, 117 (1987).ADSCrossRefGoogle Scholar
  33. 31.
    R. De Ridder, G. van Tendeloo, J. van Landuyt, D. van Dyck and S. Amelinckx, Phys. Stat. Sol. a, 37, 591 (1976).ADSCrossRefGoogle Scholar
  34. 32.
    W. Thulke, R. Frahm, R. Haensel and P. Rabe, Phys. Stat. Sol. a, 75, 501 (1983).ADSCrossRefGoogle Scholar
  35. 33.
    B.W. Pfalzgraf, H. Spreckels, W. Paulus and R. Schöllhorn, to be published.Google Scholar
  36. 34.
    P. Buller, Dissertation, university of Münster (1985).Google Scholar
  37. 35.
    P. Rathner, A. Payer and R. Schöllhorn, in preparation.Google Scholar
  38. 36.
    R. Schöllhorn and B. Otto, J.C.S. Chem. Comm. 1987, 1222.Google Scholar
  39. 37.
    J. Rouxel, J. de Phys. 83, 841 (1986).ADSGoogle Scholar
  40. 38.
    R. Schöllhorn, Pure and Appl. Chem. 56, 1739 (1984).CrossRefGoogle Scholar
  41. 39.
    J.W. Johnson, and A.J. Jacobson, Angew. Chem. 95, 422 (1983).CrossRefGoogle Scholar
  42. J.W. Johnson, and A.J. Jacobson, Angew. Chem. Int. Ed. Engl. 22, 412 (1983).CrossRefGoogle Scholar
  43. 40.
    R. Schöllhorn, Comments in Inorg. Chem. 2, 271 (1983).CrossRefGoogle Scholar
  44. 41.
    W. Schramm, E. Gocke and R. Schöllhorn, Mat. Res. Bull. 21, 929 (1986).CrossRefGoogle Scholar
  45. 42.
    G. Aselmann, W. Müller-Warmuth, E. Gocke and R. Schöllhorn, Z. Phys. Chem. N.F. 151, 103 (1987).CrossRefGoogle Scholar
  46. E. Gocke, R. Schöllhorn, G. Aselmann and W. Miiller-Warmuth, Inorg. Chem. 26, 1805 (1987).CrossRefGoogle Scholar
  47. 43.
    Y. Watanabe, G.A. Wiegers and CF. van Bruggen, Synth. Met. 10, 1 (1984).CrossRefGoogle Scholar
  48. 44.
    W. Schramm, R. Schöllhorn, H. Eckert and W. Müller-Warmuth, Mat. Res. Bull. 18, 1283 (1983).CrossRefGoogle Scholar
  49. H. Eckert, W. Müller-Warmuth, W. Schramm and R. Schöllhorn, Solid State Ionics 13, 1 (1984).CrossRefGoogle Scholar
  50. 45.
    L. Bernard, M. McKelvy, and W. Glaunsinger, Solid State Ionics 15, 301 (1985); H.J.M. Bouwmeester and G.A. Wiegers, to be published.CrossRefGoogle Scholar
  51. 46.
    N. Janzen, Dissertation, University of Münster (1987).Google Scholar
  52. 47.
    H. Eckert, R.H. Herber, J. Chem. Phys. 80, 4526 (1984).ADSCrossRefGoogle Scholar
  53. 48.
    R. Schöllhorn, H.D. Zagefka, T. Butz and A. Lerf, Mat. Res. Bull. 14, 369 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Robert Schöllhorn
    • 1
  1. 1.Institut für Anorganische und Analytische ChemieTechnische Universität BerlinBerlin 12Germany

Personalised recommendations