Magnetic phenomena in layered and intercalated compounds

  • Denis G. Rancourt
Part of the NATO ASI Series book series (NSSB, volume 172)


The intrinsic magnetism of two-dimensional (2D) lattices is of fundamental interest and has been the subject of intense theoretical studies. These studies have motivated much of the experimental work on layered and intercalated compounds. The idea of an “effective dimensionality” which can be varied from three to two as the inter-layer or inter-intercalate separation is increased has been an additional incentive. The latter notion is mainly the product of intuitive curiosity since theory has been of little help in guiding our expectation concerning such intermediate dimensionalities. That is, surprizingly little is known about local moments on quasi-2D lattices [which are essentially three-dimensional (3D) lattices with symmetries lower than cubic] compared to exactly 2D lattices. Nonetheless, one might expect to observe an h-T phase diagram such as that represented in Fig. 1 where h is the inter-layer or inter-intercalate separation and T is the absolute temperature. For example, h could be the c-axis of a tetragonal system in which the spins are on the corners of the square end faces. This hypothetical phase diagram
Fig. 1

Hypothetical h-T phase diagram where h is the inter-layer distance

exhibits three regions: a high temperature paramagnetic (P) phase, a phase where some form of 2D order is stabilized and a 3D ordered phase. Particular examples of the meaning and somewhat limited usefulness of such a phase diagram are given below. It is of more consequence, however, to admit that the relation between structure and magnetism is of a far greater variety (and subtlety) than that which can be expressed by the single parameter h. This view is stressed and illustrated by many examples throughout the present paper.


Magnetic Phase Transition Local Moment Intercalation Compound Mossbauer Spectrum Graphite Intercalation Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Onsager, Crystal statistics I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65:117 (1944).MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    S. Katsura, Statistical mechanics of the anisotropic linear Heisenberg model, Phys. Rev. 127: 1508 (1962). Note error in Fig. 3 of this reference: curve labelled “i” for |J|χi/Nm2 should intersect the axis of ordinates at 2/π ≃ 0.6366 rather than drop off to zero as T → 0.ADSCrossRefMATHGoogle Scholar
  3. 3.
    P.R. Weiss, The application of the Bethe-Peierls method to ferromagnetism, Phys. Rev. 74: 1493 (1948).ADSCrossRefMATHGoogle Scholar
  4. 4.
    L.J. de Jongh and A.R. Miedema, Experiments on simple magnetic model systems, Adv. Phys. 23:1 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    D. Mattis and W.E. Donath, Role of Fermi surface and crystal structure in theory of magnetic metals, Phys. Rev. 128: 1618 (1962).ADSCrossRefGoogle Scholar
  6. 6.
    D. G. Rancourt, New theory for magnetic graphite intercalation compounds: superferromagnetism in two dimensions, J. Magn. Magn. Mat. 51:133 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    J.W. Bray, L.V. Interrante, I.S. Jacobs and J.C. Bonner, in: Extended Linear Chain Compounds, J.C. Millder, Ed., Plenum, New York (1982).Google Scholar
  8. 8.
    D. G. Rancourt, Low temperature behaviour of Ising magnetic chains: decorated solitons, locally enhanced exchange and diffusive propagation, Sol. State Comm. 58:433 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    D.G. Rancourt, Magnetoelastic mechanism for magnetic short range order above Tc, unpublished.Google Scholar
  10. 10.
    M.E. Fisher, Relation between the specific heat and susceptibility of an antiferromagnet, Phil. Mag. 7:1731 (1962).ADSCrossRefGoogle Scholar
  11. 11.
    M. Matsura, Hierarchy nature of magnetic ordering in MCℓ2-GIC’s, Ann. Phys. 11: C2–117 (1986).Google Scholar
  12. 12.
    D. G. Rancourt, Pervasiveness of cluster excitations as seen in the Mössbauer spectra of magnetic materials, Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME-87), Melbourne, Australia, 1987, to be published in Hyp. Int..Google Scholar
  13. 13.
    e.g., L.L. Hinchey and D.L. Mills, Magnetic properties of superlattices formed from ferromagnetic and antiferromagnetic materials, Phys. Rev. B 33:3329 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    Modulated Structures — 1979, AIP conference proceeding number 53, J.M. Cowley, J.B. Cohen, M.B. Salamon and B.J. Wuensch, eds., American Institute of Physics, New York (1979).Google Scholar
  15. 15.
    Synthetic Modulated Structures, L.L. Chong and B.C. Giessen, eds., Academic Press, New York (1985).Google Scholar
  16. 16.
    I. S. Jacobs and P.E. Lawrence, Metamagnetic phase transitions and hysteresis in FeCℓ2, Phys. Rev. 164: 866 (1967). Includes a review of metamagnetism.ADSCrossRefGoogle Scholar
  17. 17.
    L. P. Regnault and J. Rossat-Mignod, Phase transitions in quasi-2D planar magnets, in: Magnetic Properties of Layered Transition Metal Compounds, L.J. Jongh and R.D. Willet, eds., unpublished.Google Scholar
  18. 18.
    S. Flandrois, A.W. Hewat, C. Hauw and R.H. Bragg, Neutron diffraction and small-angle scattering studies of graphite-nickel chloride intercalation compounds, Synth. Met. 7: 305 (1983).CrossRefGoogle Scholar
  19. 19.
    D.G. Rancourt, C. Meschi and S. Flandrois, S = 1/2 antiferromagnetic finite chains effectively isolated by frustration: CuCℓ2-GIC, Phys. Rev. B 33:347 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    S. Flandrois, J.-M. Masson, J.-C. Rouillon, J. Gauthier and C. Hauw. Intercalation compounds of graphite with nickel chloride: synthesis, structure, and mechanism of intercalation, Synth. Met. 3: 1 (1981).CrossRefGoogle Scholar
  21. 21.
    F. Baron, S. Flandrois, C. Hauw and J. Gauthier, Charge transfer and islands in metal halide GIC’s: new evidence from X-ray diffraction of intercalated MnCℓ2, Sol. State Comm. 42: 759 (1982).ADSCrossRefGoogle Scholar
  22. 22.
    D.M. Hwang, X. W. Qian and S.A. Solin, Physics and chemistry of spatially resolved microdomains in SbCℓ5-GIC, Phys. Rev. Lett. 53: 1473 (1984).ADSCrossRefGoogle Scholar
  23. 23.
    R. Levi-Setti, G. Crow, Y.L. Wang, N.W. Parker, R. Mittleman and D.M. Hwang, High-resolution scanning-ion-microprobe study of graphite and its intercalation compounds, Phys. Rev. Lett. 54: 2615 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    G. Kirczenow, Kinetics of stage ordering and stage transitions, Phys. Rev. Lett. 55: 2810 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    D.G. Rancourt, B. Hun and S. Flandrois, Magnetic properties of intercalated transition metla chlorides which have ferromagnetic in-plane coupling, Ann. Phys. 11:C2–107 (1986).Google Scholar
  26. 26.
    M. Prietsch, G. Wortmann, G. Kaindl and R. Schlögl, Mössbauer study of stage-2 FeCℓ3-graphite, Phys. Rev. B 33:7451 (1986).ADSCrossRefGoogle Scholar
  27. 27.
    R. Schlögl, P. Bowen, G.R. Millward, W. Jones and H.P. Boehm, Microstructure and stability of iron chloride graphite, J. Chem. Soc. Faraday Trans. 1 79:1793 (1983).CrossRefGoogle Scholar
  28. 28.
    J.M. Cowley and J.A. Ibers, Structure of FeCℓ3-GIC, Acta. Crystallogr. 9: 421 (1956).CrossRefGoogle Scholar
  29. 29.
    H. Thiele, Die Vorgänge bei dem aufblähen von graphit, Z. Anorg. Allg. Chem. 207: 340 (1932).CrossRefGoogle Scholar
  30. 30.
    D. Hohlwein, P.W. Readman, A. Chamberod and J.M.D. Coey, Magnetic properties of two-dimensional iron chloride GIC, Phys. Stat. Sol, (b) 64:305 (1974).Google Scholar
  31. 31.
    S.E. Millman and G. Kirczenow, Mössbauer analysis of the acceptor site for the donated electrons in FeCℓ3 GIC, Phys. Rev. B 28:5019 (1983).ADSCrossRefGoogle Scholar
  32. 32.
    D. G. Rancourt, B. Hun and S. Flandrois, New biintercalation compound, FeCℓ3-NiCℓ2-graPhite, studies by Mössbauer effect spectroscopy and SQUID magnetization measurements: an ideally decoupled bimagnetic system, submitted for publication, and extended abstract at 18th Biennial Conference on Carbon, Worcester, Massachusetts, July 19–24, 1987.Google Scholar
  33. 33.
    S.G. Brush, History of the Lenz-Ising model Rev. Mod. Phys. 39: 883 (1967).ADSCrossRefGoogle Scholar
  34. 34.
    C. Domb, Ising model, in: Phase Transitions and Critical Phenomena, vol. 3, C. Domb and M.S. Green, eds., Academic Press, London (1974).Google Scholar
  35. 35.
    D.D. Betts, X-Y model, in: Phase Transitions and Critical Phenomena, vol. 3, C. Domb and M.S. Green, eds., Academic Press, London (1974).Google Scholar
  36. 36.
    G.S. Rushbrooke, G.A. Baker, Jr. and P.J. Wood, Heisenberg model, in: Phase Transitions and Critical Phenomena, vol. 3, C. Domb and M.S. Green, eds., Academic Press, London (1974).Google Scholar
  37. 37.
    M. Steiner, J. Villain and C.G. Windsor, Theoretical and experimental studies on one-dimensional magnetic systems, Adv. Phys. 25: 87 (1976).ADSCrossRefGoogle Scholar
  38. 38.
    J.M. Kosterlitz and D.J. Thouless, Ordering metastability and phase transitions in two-dimensional systems, J. Phys. C 6: 1181 (1973).ADSCrossRefGoogle Scholar
  39. 39.
    F. Block, Zur theorie des ferromagnetismus, Zeits f. Physik 61:206 (1930).ADSCrossRefGoogle Scholar
  40. 40.
    N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17:1133 (1966).ADSCrossRefGoogle Scholar
  41. 41.
    e.g., D.J. Breed, Experimental investigation of two two-dimensional antiferromagnets with small anisotropy, Physica 37:35 (1967).ADSCrossRefGoogle Scholar
  42. 42.
    H.E. Stanley and T.A. Kaplan, Possibility of a phase transition for the two-dimensional Heisenberg model, Phys. Rev. Lett. 17: 913 (1966).MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    M. Suzuki, S. Miyashita, A. Kuroda and C. Kawwabata, Monte Carlo simulations of the two-dimensional quantal and classical spin systems — A new type of phase transition with vortices, Phys. Lett. 60A: 478 (1977).ADSCrossRefGoogle Scholar
  44. 44.
    C. Kawabata and K. Binder, Evidence for vortex formation in Monte Carlo studies of the two-dimensional XY-model, Sol. State Comm. 22: 705 (1977).ADSCrossRefGoogle Scholar
  45. 45.
    J. Tobochnik and G.V. Chester, Monte Carlo study of the planar spin model, Phys. Rev. B 20:3761 (1979).ADSCrossRefGoogle Scholar
  46. 46.
    D.H. Lee, J.D. Joannopoulos, J.W. Negele and D.P. Landau, Discretesymmetry breaking and novel critical phenomena in an antiferromagnetic planar (XY) model in two dimensions, Phys. Rev. Lett. 52: 433 (1984).ADSCrossRefGoogle Scholar
  47. 47.
    H. De Raedt, B. De Raedt and A. Lagendijk, Thermodynamics of the two-dimensional spin-1/2 XY model, Z. Phys. B 57: 209 (1984).MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    J.V. José, L.P. Kadanoff, S. Kirkpatrick and D.R. Nelson, Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model, Phys. Rev. B 16: 1217 (1977).ADSCrossRefGoogle Scholar
  49. 49.
    D.A. Smith, The zero-frequency susceptibility of spin glasses and mictomagnets, J. Phys. F 5: 2148 (1975).ADSCrossRefGoogle Scholar
  50. mictomagnets, J. Phys. F 5:2148 (1975).Google Scholar
  51. 50.
    O. Nagai, Y. Yamada and H.T. Diep, Linear-chain-like excitations in a three-dimensional Ising lattice with frustration: Monte Carlo simulations, Phys. Rev. B 32:480 (1985).ADSCrossRefGoogle Scholar
  52. 51.
    C. Hauw, J. Gauthier, S. Flandrois, O. Gonzalez, D. Dorignac and R. Jagut, Étude par diffraction des rayons-X et mocroscopie électronique à haute résolution de quelques composes d’insertion graphite-chlorure métalique, Synth. Met. 7:313 (1983).CrossRefGoogle Scholar
  53. 52.
    J.W. Stout and R.C. Chisholm, Heat capacity and entropy of CuCℓ2 and CrCℓ2 from 11° to 300° K: Magnetic ordering in linear chain crystals, J. Chem. Phys. 36:979 (1962).ADSCrossRefGoogle Scholar
  54. 53.
    R.C. Thiel, H. de Graaf and L.J. de Jongh, Soliton contribution to the Mössbauer linewidth in quasi-one-dimensional antiferromagnets with Ising anisotropy: theory versus experiment, Phys. Rev. Lett. 47:1415 (1981).ADSCrossRefGoogle Scholar
  55. 54.
    H.J.M. de Groot, L.J. de Jongh, M. ElMassalami, H.H.A. Smit and R.C. Thiel, Mössbauer relaxation studies of non-linear dynamical excitations in low-dimensional magnets, Hyp. Int. 27:93 (1986).ADSCrossRefGoogle Scholar
  56. 55.
    M. ElMassalami, Relaxation Studies on Non-Linear Excitations in Pure and Impure Ising-Type Magnetic Systems, thesis, Kamerlingh Onnes Laboratorium, Leiden, (1987).Google Scholar
  57. 56.
    H.H.A. Smit, H.J.M. de Groot, M. ElMassalami, R.C. Thiel and L.J. de Jongh, Fe-57 Mössbauer effect study of non-linear excitations in anisotropic quasi-1D magnetic systems, (unpublished), and personal communications.Google Scholar
  58. 57.
    D.G. Rancourt, H.H.A. Smit and R.C. Thiel, Metastable compositionally and magnetically modulated state of Fe-Ni Invar and the associated super-moment dynamics from Mössbauer spectroscopy, J. Magn. Magn. Mat. 66:121 (1987).ADSCrossRefGoogle Scholar
  59. 58.
    H. Suematsu, K. Ohmatsu, T. Sakakibara, M. Date and M. Suzuki, Magnetic properties of europium-graphite intercalation compound C6Eu, Synth. Met. 8:23 (1983).CrossRefGoogle Scholar
  60. 59.
    L. Néel, Théorie du trainage des ferromagnétiques en grains fins avec application aux terres cuites, Ann. Geophys. 5:99 (1949).Google Scholar
  61. 60.
    W.F. Brown, Jr., Thermal fluctuations of a single domain particle, Phys. Rev. 130:1677 (1963).ADSCrossRefGoogle Scholar
  62. 61.
    D. G. Rancourt and J.M. Daniels, Influence of unequal magnetization direction probabilities on the Mössbauer spectra of superparamagnetic particles, Phys. Rev. B 29:2410 (1984).ADSCrossRefGoogle Scholar
  63. 62.
    M. Suzuki, I. Oguro and Y. Jinzaki, Magnetic phase transition of stage-1 ternary CoCℓ2-FeCℓ3-graphite intercalation compound, J. Phys. C 17:L575 (1984).ADSCrossRefGoogle Scholar
  64. 63.
    M. Elahy and G. Dresselhaus, CoCℓ2-intercalated graphite: A quasi-two-dimensional magnetic system, Phys. Rev. B 30:7225 (1984).ADSCrossRefGoogle Scholar
  65. 64.
    G. Chouteau, R. Yazami and Ph. Touzain, Synthesis and new magnetic properties of stage-1 CoCℓ2-GIC, presented and published as an extended abstract, Carbone-86, Baden Baden.Google Scholar
  66. 65.
    Y. Murakami, M. Matsuura, M. Suzuki and H, Ikeda, Ordering process in CoCℓ2-GIC, J. Magn. Magn. Mat. 31-34:1171 (1983).ADSCrossRefGoogle Scholar
  67. 66.
    S.T. Chen, K. Y. Szeto, M. Elahy and G. Dreselhaus, Magnetic phase transitions in CoCℓ2-GIC, J. Chim. Phys. +Phys. Chim. Biol. 81:863 (1984).Google Scholar
  68. 67.
    H. Suematsu, R. Nishitani, R. Yoshizaki, M. Suzuki and H. Ikeda, Magnetization measurements of the second stage NiCℓ2-GIC, J. Phys. Soc. Jpn. 52:3874 (1983).ADSCrossRefGoogle Scholar
  69. 68.
    M. Suzuki, H. Ikeda, Y. Murakami, M. Matsuura, H. Suematsu, R. Nishitani and R. Yoshizaki, Magnetic phase transitions in NiCℓ2-GIC, J. Magn. Magn. Mat. 31-34:1173 (1983).ADSCrossRefGoogle Scholar
  70. 69.
    Yu. S. Karimov and Yu. N. Novikov, Phase transitions in a two-dimensional ferromagnet with “easy-plane” anisotropy, JETP Lett. 19:159 (1974).ADSGoogle Scholar
  71. 70.
    Y.-A. Rocher, L’Étude de la structure électronique des métaux des terres rares, Adv. Phys. 11:233 (1962).ADSCrossRefGoogle Scholar
  72. 71.
    A. F. Cohen, S.A. Friedberg and G.R. Wagner, The low temperature magnetic susceptibility of Mn(HC02)2.2H20, Phys. Lett. 11:198 (1964).ADSCrossRefGoogle Scholar
  73. 72.
    H. Abe and M. Matsuura, Proton nuclear magnetic resonance study in manganese formate dihydrate, J. Phys. Soc. Jpn. 19:1867 (1964).ADSCrossRefGoogle Scholar
  74. 73.
    H. Abe and K. Torii, Susceptibility of manganese formate dihydrate, J. Phys. Soc. Jpn. 20:183 (1965).ADSCrossRefGoogle Scholar
  75. 74.
    R.D. Pierce and S.A. Friedberg, Heat capacity of Mn(HCOO)2.2H2O between 1.4 and 20 K, Phys. Rev. 165:680 (1968).ADSCrossRefGoogle Scholar
  76. 75.
    P. Burlet, P. Burlet, E.F. Bertaut, G. Rouit, A. de Combarieu and J.J. Pillon, Etude de l’antiferromagnétisme à très basse température dans le formiate de manganese dihydrate, Sol. State Comm. 7:1403 (1969).ADSCrossRefGoogle Scholar
  77. 76.
    K. Takeda, T. Haseda and M. Matsuura, A study of magnetic phase transition in a two-dimensional lattice by heat capacity measurements, Physica 52:225 (1971).ADSCrossRefGoogle Scholar
  78. 77.
    M. Matsuura, H.W.J. Blöte and W.J. Huiskamp, Heat capacity and magnetic behaviour of cobalt and manganese formate dihydrate, Physica 50:444 (1970).ADSCrossRefGoogle Scholar
  79. 78.
    Y. Ajiro, N. Terata, M. Matsuura and T. Haseda, NMR study of magnetic ordering in two-dimensional antiferromagnet, Mn(HCOO)2•2H2O, J. Phys. Soc. Jpn. 28:1587 (1970).ADSCrossRefGoogle Scholar
  80. 79.
    K. Takeda and S. Matsukawa, Magnetic susceptibility of antiferromagnetic Co(HCOO)2•2H2O, J. Phys. Soc. Jpn. 30:887 (1971).ADSCrossRefGoogle Scholar
  81. 80.
    P. Burlet, P. Burlet and E.F. Bertaut, Étude par diffraction neutronique du formiate de fer dihydrate, Sol. State Comm. 9:1633 (1971).ADSCrossRefGoogle Scholar
  82. 81.
    A. Hérold, G. Furdin, D. Guérard, L. Hachim, N.E. Nadi and R. Vangelisti, Some aspects of graphite intercalation compounds, Ann. Phys. 11:C2–3 (1986).Google Scholar
  83. 82.
    A. Hérold, Synthesis of GIC, invited contribution in the present monograph.Google Scholar
  84. 83.
    M. Suzuki, H. Ikeda and Y. Endoh, Magnetic neutron scattering from second-stage CoCℓ2-GIC, Synth. Met. 8:43 (1983).CrossRefGoogle Scholar
  85. 84.
    H. Ikeda, Y. Endoh and S. Mitsuda, Two-dimensional spin correlations in high stage CoCℓ2-GIC, J. Phys. Soc. Jpn. 54:3232 (1985).ADSCrossRefGoogle Scholar
  86. 85.
    D.G. Wiesler, M. Suzuki, H. Zabel, S.M. Shapiro and R.M. Nicklow, Physica 136B:22 (1986).Google Scholar
  87. M. Suzuki, D.G. Wiesler, P.C. Chow and H. Zabel, Magnetic phase transitions in intercalated graphite, J. Magn. Magn. Mat. 54-57:1275 (1986); D.G. Wiesler, M. Suzuki and H. Zabel, Ordering in quasi-2D planar ferromagnets: a neutron scattering study of graphite intercalation compounds, Phys. Rev. B (1987).ADSCrossRefGoogle Scholar
  88. 86.
    H. Nishihara, I. Qguro, M. Suzuki, K. Koga and H. Yasuoka, High-temperature magnetic susceptibility of CuCℓ2-GIC, Synth. Met. 12:473 (1985).CrossRefGoogle Scholar
  89. 87.
    H. Oshima, J.A. Woollam, A. Yavrouian and M.B. Dowell, Electrical and mechanical properties of copper chloride-intercalated pitch-based carbon fibers, Synth. Met. 5:113 (1983).CrossRefGoogle Scholar
  90. 88.
    G.R. Stewart, Heavy-fermion systems, Rev. Mod. Phys. 56:755 (1984).ADSCrossRefGoogle Scholar
  91. 89.
    P.A. Lee, T.M. Rice, J.W. Serene, L.J. Sham and J.W. Wilkins, Theories of heavy-electron systems, Com. Mod. Phys. B 12:99 (1986).Google Scholar
  92. 90.
    M.E. Fisher, Magnetism in one-dimensional systems — the Heisenberg model for infinite spin, Am. J. Phys. 32:343 (1964).ADSCrossRefGoogle Scholar
  93. 91.
    T.T.M. Palstra, A.A. Menovsky, J. van den Berg, A.J. Dirkmaat, P.H. Kes, G.J. Nieuwenhuys and J.A. Mydosh, Superconducting and magnetic transitions in the heavy-fermion system URu2Si2, Phys. Rev. Lett. 55:2727 (1985).ADSCrossRefGoogle Scholar
  94. 92.
    T.T.M. Palstra, Magnetism, supercondictivity and their interplay. A study of three novel intermetallic compounds: La(Fe, Aℓ)13 UNiSn URu2Si2, thesis, Kamerlingh Onnes Laboratorium, Leiden (1986).Google Scholar
  95. 93.
    M.B. Salamon, K. V. Rao and Y. Yeshurun, Spin-glass/ferromagnetic transitions and multicritical points in amorphous transition metal alloys, J. Appl. Phys. 52:1687 (1981).ADSCrossRefGoogle Scholar
  96. 94.
    S.M. Bhagat, J.A. Geohegan, M.L. Spano and H.S. Chen, Ferromagnetic vs spin glass behaviour in amorphous Fe-Ni based alloys, J. Appl. Phys. 52:1741 (1981).ADSCrossRefGoogle Scholar
  97. 95.
    A.Z. Men’shikov, G.A. Takzey and A. Ye. Teplykh, Spin-glass in γ-(Ni80_cCr20)Fec alloys, Phys. Met. Metall. 54:41 (1982).Google Scholar
  98. 96.
    G. J. Nieuwenhuys, H. Stoker, B.H. Verbeek and J.A. Mydosh, Differential susceptibility of spin glass-ferromagnetic systems, Sol. State Comm. 27:197 (1978).ADSCrossRefGoogle Scholar
  99. 97.
    D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett. 35:1792 (1975).ADSCrossRefGoogle Scholar
  100. 98.
    L.M. Sander, Fractal growth, Sci. Am. Jan:94 (1987).Google Scholar
  101. 99.
    M. Continentino and A.P. Malozemoff, Dynamical susceptibility of spin glasses in the fractal cluster model, Phys. Rev. B 34:471 (1986).ADSCrossRefGoogle Scholar
  102. 100.
    A. Khurana, Superconductivity seen above the boiling point of nitrogen, Phys. Today April:17 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Denis G. Rancourt
    • 1
  1. 1.Ottawa Carleton Institute for PhysicsUniversity of OttawaOttawaCanada

Personalised recommendations