Surface effects in graphite intercalation compounds

  • D. Marchand
  • M. Lagues
  • C. Fretigny
Part of the NATO ASI Series book series (NSSB, volume 172)


The theoretical description of the band structure of these compounds has drastically changed during the last ten years [1–5]. The so called ONK description [1] first proposed the picture of a nearly rigid band structure, with the s band of the alkali atom partially filled. One of the main points was to calculate the charge transfer of the alkali atom (≈0.6 according to ONK calculations). Subsequently, Posternak et al. published a calculation exhibiting a completely new graphite band, the interlayer band [2]. They suggested that this level, located at 4 eV above the Fermi level in graphite, could play an important role in the intercalation mechanism and should be taken into account in the GIC band structure calculations. Later, this was clearly established for example by the calculations of Holzwarth et al. for LiC6 [3]. At the same time, a new calculation for the band structure of KC8 and CsC8 was presented by R.C. Tatar and S. Rabii (TR) [4], showing complete charge transfer from the alkali atoms, the corresponding s level lying respectively 1.5 and 3.4 eV above the Fermi level. Moreover, according to TR the Fermi surface presents a pocket in the center of the Brillouin Zone (BZ) which relates only to the π bands and not to the alkali metal. Recently, H. Kamimura has given a new interpretation of ONK calculations [5], according to which the alkali atom also yields a unit charge transfer. Following this interpretation, the Fermi pocket at the BZ center should be related mainly to the interlayer band. Now, both the revised ONK (rONK) and the TR descriptions agree on the full ionization of the alkali atoms, and on the graphitic origin of the central Fermi pocket. The main difference between these descriptions relies on the location of the corresponding states in real space: they are located on the graphite layers for TR and between them for rONK.


Fermi Surface Auger Electron Spectroscopy Auger Spectrum Sharp Feature Alkali Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1-.
    T. Ohno, K. Nakao and H. Kamimura J. Phys. Soc. Jpn. 47 (1979) 1125.ADSCrossRefGoogle Scholar
  2. 2-.
    M. Posternak, A. Baldereschi, A.J. Freeman, E. Wimmer and M. Weinert Phys. Rev. Lett. 50 (1983) 761ADSCrossRefGoogle Scholar
  3. N.A.W. Holzwarth, S.G. Louie and S. Rabii Phys. Rev. B28 (1983) 1013ADSCrossRefGoogle Scholar
  4. 4-.
    R.C. Tatar and S. Rabii “Graphite Intercalation Compounds” Symposium 1 of the Mat. Res. Soc. (BOSTON November 1984)p 71.Google Scholar
  5. 5-.
    H. Kamimura Annales de Physique Coll. 2 11 (1986) 39.Google Scholar
  6. 6-.
    P. Pfluger, P. Oelhafen, H.U. Kunzi, R. Jeker, G. Hauser, K.P. Ackermann M. Muller and H.J. Guntherrodt Physica 99B (1980) 395Google Scholar
  7. 7-.
    M. Lagues, D. Marchand, C. Fretigny and A.P. Legrand Solid State Commun. 49 (1984) 739.ADSCrossRefGoogle Scholar
  8. 8-.
    M. Lagues, D. Marchand and A.P. Legrand Solid State Sciences 38 (1981) 49 (Ed. Pietronero and Tossatti) Springer Verlag N-Y.Google Scholar
  9. 9-.
    M. Lagues, D. Marchand and C. Fretigny Annales de Physique Coll.2 11 (1986) 49.Google Scholar
  10. 10-.
    J.G. Murday, B.I. Dunlap, F.L. Huston and P. Oelhafen Phys. Rev. B24 (1981) 4764ADSCrossRefGoogle Scholar
  11. 11-.
    B.I. Dunlap, D.E. Ramaker and J.S. Murday Phys. Rev. B25 (1982) 6439.ADSCrossRefGoogle Scholar
  12. 12-.
    M. Lagues, D. Marchand and C. Fretigny Synth. Metals 12 (1985) 263 and “Graphite Intercalation Compounds” Symposium K of the 1986 Fall Meeting of the Mat. Res. Soc. (BOSTON December 1986) p 80.Google Scholar
  13. 13-.
    N. Gunasekara, T. Takahashi, F. Maeda, T. Sagawa and H. Suematsu J. Phys. Soc. Jpn. 56 (1987) 2581.ADSCrossRefGoogle Scholar
  14. 14-.
    M.T. Johnson, H.I. Starnberg and H.P. Hughes Solid State Commun. 57 (1986) 545.ADSCrossRefGoogle Scholar
  15. 15-.
    E. Jensen and E.W. Plummer Phys.Rev.Lett. 55 (1985) 1912.ADSCrossRefGoogle Scholar
  16. 16-.
    M. Lagues, D. Marchand and C. Fretigny Solid State Commun. 59 (1986) 583.ADSCrossRefGoogle Scholar
  17. 17-.
    P. Oelhafen, P. Pfluger and H.J. Guntherodt Solid State Commun. 32 (1979) 885.ADSCrossRefGoogle Scholar
  18. 18-.
    S.B. Di Cenzo Synth.Metals 12 (1985) 251.CrossRefGoogle Scholar
  19. 19-.
    J.J. Lander Phys.Rev. 91 (1953) 1382.ADSCrossRefGoogle Scholar
  20. 20-.
    C. Fretigny, D. Marchand and M. Lagues Phys.Rev. B32 (1985) 8462.ADSCrossRefGoogle Scholar
  21. 21-.
    D.S. Robinson, T.C. Mcglinn, J.L. Zarestky and M.B. Salamon “Graphite Intercalation Compounds” Symposium K of the 1986 Fall Meeting of the Mat.Res.Soc. (BOSTON December 1986)p 16.Google Scholar
  22. 22-.
    N. Wada, S. Minomura and J. Pluth Solid State Commun. 55 (1985) 393.ADSCrossRefGoogle Scholar
  23. 23-.
    This is clear when the corrugation energy is deduced from the substrate potentiel as described for instance by: S.C. Moss, G. Reiter, C. Thompson, J.L. Robertson, J.D. Fan and K. Oshima “Graphite Intercalation Compounds” Symposium K of the 1986 Fall Meeting of the Mat.Res.Soc.(BOSTON December 1986) p 20.Google Scholar
  24. 24-.
    A.W. Overhauser Phys.Rev.Lett. 55 (1985) 1916.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • D. Marchand
    • 1
  • M. Lagues
    • 1
  • C. Fretigny
    • 1
  1. 1.Laboratoire de Physique Quantique. CNRS Unité Associée 421ESPCIParis Cédex 05France

Personalised recommendations