Advertisement

X-Ray absorption in intercalated lamellar compounds

  • D. Bonnin
  • P. Kaiser
Part of the NATO ASI Series book series (NSSB, volume 172)

Abstract

This paper explains the possibilities of the X-ray absorption spectroscopies, particularly when they are used to study 2D-compounds. Different materials have been studied and the published results can be classified in several classes, the most usual are:

graphite and related intercalation compounds/dichalcogenides and related intercalation compounds/III–V layered compounds/FeOCl, MPS3/Some organic and biological compounds (for example: ferrocene and heme in myoglobin...)/Some mineral compounds (micas, clays, pillared clays, several oxides and hydroxides.)

Keywords

Edge Region Pillared Clay Core Hole Dipole Selection Rule Rigid Band Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bianconi A. Exafs and Near Edge Structure III. Springer Verlag proc. conf. Stanford (1984) 167/74.CrossRefGoogle Scholar
  2. [2]
    Heald S.M. Stern E.A. Phys. Rev. B16 (1977) 5549.ADSCrossRefGoogle Scholar
  3. [3]
    Rosenberg R.A. Love P.J. Rehn V. Phys. Rev. B33 (1986) 4034 EXAFS and Near Edge Structure III Springer Verlag (1984).ADSCrossRefGoogle Scholar
  4. [4]
    Fretigny C. Bonnin D. Cortes R. Exafs and Near Edge Structure IV J. de Phys. proc. conf. Fontevreau (1986) C8 869.Google Scholar
  5. [5]
    Bonnin D. Bouat J. Kaiser P. Fretigny C. Beguin F. Exafs and Near Edge Structure IV J. de Phys. proc. conf. Fontevreau (1986) C8 865.Google Scholar
  6. [6]
    Heald S.M. Stern E.A. Phys. Rev. B 16 (1977) 5549.ADSCrossRefGoogle Scholar
  7. [7]
    Ohno Y. Hirama K. Nakai S. Sugiura C. Okada S. Phys. Rev. B 27 (1982) 3811.ADSGoogle Scholar
  8. [8]
    Ohno Y. Hirama K. Nakai S. Sugiura C. Okada S. Synth. Met. 6 (1983) 149.CrossRefGoogle Scholar
  9. [9]
    Davies B.M. Brown F.C. Phys. Rev. B 25 (1982) 2997.ADSCrossRefGoogle Scholar
  10. [10]
    Bourdillon A.J. Pettifer R.F. Marseglia E.A. J. Phys. C 12 (1979) 3889.ADSGoogle Scholar
  11. [11]
    Thulke W. Frahm R. Haensel R. Rabe P. Phys. Stat. Sol. A 75 (1983) 501.ADSCrossRefGoogle Scholar
  12. [12]
    Heald S.M. Stern E.A. Synth. Met. 1 (1980) 249.CrossRefGoogle Scholar
  13. [13]
    Ohno Y. Watanabe H. Kawata A. Nakai S. Sugiura C. Phys. Rev. B 25 (1982) 815.ADSCrossRefGoogle Scholar
  14. [14]
    Feldman J.L. Elam W.T. Ehrlich A.C. Skelton E.F. Domingez D.D. Quadri S.B. Chung D.D.L. Lytle F.W. in Exafs and Near Edge Structure III (1984) Springer Verlag and Solid State Commun. 49 (1984) 1023.Google Scholar
  15. Feldman J.L. Elam W.T. Ehrlich A.C. Skelton E.F. Domingez D.D. Chung D.D.L. Lytle F.W. Phys. Rev. B33 (1986) 7961.ADSCrossRefGoogle Scholar
  16. [15]
    Bonnin D. Bouat J. Progress in X-ray studies by Synchrotron Radiation. Strasbourg (1985) // Legrand A.P. Facchini L. Bonnin D. Bouat J. Quinton M.F. Beguin F. Synth. Met. 12 (1985) 175.CrossRefGoogle Scholar
  17. [16]
    Caswell N. Solin S.A. Hayes T.M. Hunter S.J. Physica B99 (1980) 463.Google Scholar
  18. [17]
    Bouat J. Bonnin D. Facchini L. Synth. Met. 7 (1983) 233.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • D. Bonnin
    • 1
  • P. Kaiser
    • 1
  1. 1.Laboratoire de Physique Quantique C.N.R.S. U.A. 421E.S.P.C.I.Paris Cedex 05France

Personalised recommendations