Structural properties of doped polyacetylenes

  • Serge Flandrois
  • Ali Boukhari
Part of the NATO ASI Series book series (NSSB, volume 172)


Among polymers that become highly conducting upon doping, polyacetylene, (CH)x, plays a special role: this simplest conjugated polymer can be obtained under high crystallinity, which gives the opportunity to study the relationship between structural and electrical properties. However polyacetylene cannot be obtained as single crystals, at least up to now, but under the form of films constituted of randomly distributed fibers with diameters ranging from about 200 A to 500 A. The fibers can be more or less aligned preferentially, for example by stretching the films. Nevertheless, X-ray spectra show only Debye-Scherrer diffraction rings, which in addition are limited in number (10 to 12). Thus the general approach consists in imagining a structural model a priori and then in comparing observed positions and intensities of diffraction peaks with those calculated from the model. Also of interest are lattice packing calculations and analysis of molecular packing in model compounds.


Alkali Metal Channel Model Neutron Diffraction Study High Doping Level Chain Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Baughman, S. L. Hsu, L. R. Anderson, G. P. Pez and A. J. Signorelli, in “Molecular Metals”, NATO Conf. Sci., W. E. Hartfield, ed., Plenum, N.Y. (1979) p. 187.Google Scholar
  2. 2.
    C. R. Fincher, C. E. Chen, A. J. Heeger, A. G. MacDiarmid and J. B. Hastings, Phys. Rev. Lett. 48:100 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    S. Flandrois, C. Hauw and B. François, J. Phys. C3 44:523 (1983).Google Scholar
  4. 4.
    J. P. Pouget, P. Robin, R. Comes, H. W. Gibson, A. J. Epstein and D. Billaud, Physica B 127:158 (1984).Google Scholar
  5. 5.
    S. L. Hsu, A. J. Signorelli, G. P. Pey and R. H. Baughman, J. Chem. Phys. 69:106 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    M. Monkenbusch, Makromol. Chem. Rap. Comm. 3:601 (1982).CrossRefGoogle Scholar
  7. 7.
    S. Flandrois, J. M. Masson, J. C. Rouillon, J. Gaultier and C. Hauw, Synth. Met. 3:1 (1981).CrossRefGoogle Scholar
  8. 8.
    H. W. Hässlin, C. Riekel, K. Menke and S. Roth, Makromol. Chem. 185:397 (1984).CrossRefGoogle Scholar
  9. 9.
    G. Wieners, R. Weizenhöfer, M. Monkenbusch, M. Stamm, G. Lieser, V. Enkelmann and G. Wegner, Makromol. Chem. Rap. Comm. 6:425 (1985).CrossRefGoogle Scholar
  10. 10.
    J. P. Pouget, J. C. Pouxviel, P. Robin, R. Comes, D. Begin, D. Billaud, A. Feldblum, H. W. Gibson and A. J. Epstein, Mol. Cryst. Liq. Cryst. 117:75 (1985).CrossRefGoogle Scholar
  11. 11.
    J. P. Pouget, A. Pron, A. Murasik, D. Billaud, J. C. Pouxviel, P. Robin, I. Kulszewicz, D. Begin, J. J. Demai and S. Lefrant, Sol. State Comm. 57: (1986).Google Scholar
  12. 12.
    A. Boukhari, S. Flandrois and A. Pron, To be published.Google Scholar
  13. 13.
    R. H. Baughman, N. S. Murthy and G. G. Miller, J. Chem. Phys. 79:515 (1983).ADSCrossRefGoogle Scholar
  14. 14.
    J. P. Aimé, M. Bertault, P. Delannoy, R. L. Elsenbaumer, G. G. Miller and M. Schott, J. Phys. Lett. 46:379 (1985).CrossRefGoogle Scholar
  15. 15.
    S. Flandrois, C. Hauw and B. François, Mol. Cryst. Liq. Cryst. 117:91 (1985).CrossRefGoogle Scholar
  16. 16.
    M. Ziliox, Thesis Strasbourg (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Serge Flandrois
    • 1
  • Ali Boukhari
    • 1
  1. 1.Centre de Recherche Paul PascalDomaine UniversitaireTalence CedexFrance

Personalised recommendations