Advertisement

Electronic and transport properties of highly conducting polymers

  • J. L. Brédas
Part of the NATO ASI Series book series (NSSB, volume 172)

Abstract

Conducting polymers! If, by the term “conducting”, we mean a material displaying an electrical conductivity at the metallic level, i.e. a conductivity typically larger than 100 S/cm at room temperature, the possibility of labelling in this way an organic polymer was considered until the late sixties to be very remote. In the past fifteeen years, however, exciting discoveries have triggered a revolution in our knowledge and perception of the organic solid state. Nowadays, there exists a large number of electrically conducting polymers [1] and the steady improvement of their mechanical characteristics, environmental stability, and solubility properties opens up interesting technological applications. Conducting polymers can indeed offer to combine in a single material the electrical properties of metals with the plasticity, light weight, low cost, and synthetic engineering feasibility of polymers. Furthermore, in their pristine state, these polymers have been recently demonstrated to possess very promising nonlinear optical characteristics.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Poly Thiophene Poly Acetylene Defect Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    (a) Proceedings of the International Conference on Synthetic Metals-ICSM’86-, Synth. Met. 17, 18, & 19 (1987).Google Scholar
  2. (b).
    “Handbook of Conducting Polymers”, T.A. Skotheim, ed., Marcel Dekker, New York, 1986.Google Scholar
  3. (c).
    Proceedings of the International Winterschool on the Electronic Properties of Polymers-IWEPP’87-, Springer Verlag, Berlin, in press.Google Scholar
  4. [2]
    V.V. Walatka, M.M. Labes, and J.H. Perlstein, Phys. Rev. Lett. 31, 1139 (1973).ADSCrossRefGoogle Scholar
  5. M.M. Labes, P. Love, and L.F. Nichols, Chem. Rev. 79, 1 (1979).CrossRefGoogle Scholar
  6. [3]
    R.L. Greene, G.B. Street, and L.J. Suter, Phys. Rev. Lett. 34, 577 (1975).ADSCrossRefGoogle Scholar
  7. [4]
    W.D. Gill, W. Bludau, R.H. Geiss, P.M. Grant, R.L. Greene, J.J. Mayerle, and G.B. Street, Phys. Rev. Lett. 38, 1305 (1977).ADSCrossRefGoogle Scholar
  8. G.B. Street and W.D. Gill, in “Molecular Metals”, W.E. Hatfield, ed., Plenum, New York, 1979, NATO Conference Series VI, vol. 1, p. 301.Google Scholar
  9. [5]
    H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger, J. Chem. Soc. Chem. Commun. 578 (1977).Google Scholar
  10. C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, and A.G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977).ADSCrossRefGoogle Scholar
  11. [6]
    H. Naarman, Synth. Met. 17, 223 (1987).CrossRefGoogle Scholar
  12. [7]
    P. Bernier, in this volume.Google Scholar
  13. [8]
    W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).ADSCrossRefGoogle Scholar
  14. W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev. B 22, 2209 (1980).Google Scholar
  15. [9]
    C.S. Yannoni and T.C. Clarke, Phys. Rev. Lett. 51, 1191 (1983).ADSCrossRefGoogle Scholar
  16. C.R. Fincher, C.E. Chen, A.J. Heeger, A.G. MacDiarmid, and J.B. Hastings, Phys. Rev. Lett. 48, 100 (1982).ADSCrossRefGoogle Scholar
  17. [10]
    C. Rebbi, Scientific American 240, 92 (1979).ADSCrossRefGoogle Scholar
  18. [11]
    See for instance, M.A. Omar, “Elementary Solid State Physics”, Addison-Wesley, Reading, 1978, ch. 9.11.Google Scholar
  19. [12]
    D.S. Boudreaux, R.R. Chance, J.L. Brédas, and R. Silbey, Phys. Rev. B 28, 6927 (1983).ADSCrossRefGoogle Scholar
  20. [13]
    W.P Su and J.R. Schrieffer, Proc. Nat. Acad. Sci. USA 77, 5626 (1980).ADSCrossRefGoogle Scholar
  21. K. Fesser, A.R. Bishop, and D.K. Campbell, Phys. Rev. B 27, 4804 (1983).ADSCrossRefGoogle Scholar
  22. S.A. Brazovskii and N. Kirova, JETP Lett. 33, 4 (1981).ADSGoogle Scholar
  23. [14]
    J.L. Brédas, R.R. Chance, and R. Silbey, Phys. Rev. B. 26, 5843 (1982).ADSCrossRefGoogle Scholar
  24. J.L. Brédas, R.R. Chance, and R. Silbey, Mol. Cryst. Liq. Cryst. 77, 319 (1981).CrossRefGoogle Scholar
  25. [15]
    J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).MathSciNetADSCrossRefMATHGoogle Scholar
  26. [16]
    J.L. Brédas, J.C. Scott, K. Yakushi, and G.B. Street, Phys. Rev. B 30, 1023 (1984).ADSCrossRefGoogle Scholar
  27. [17]
    J.L. Brédas, F. Wudl, and A J. Heeger, Solid State Commun., in press.Google Scholar
  28. [18]
    F. Genoud, M. Guglielmi, M. Nechtschein, E.M. Genies, and M. Salmon, Phys. Rev. Lett. 55, 118 (1985).ADSCrossRefGoogle Scholar
  29. [19]
    A.J. Heeger, in “Conducting Polymers (part II)”, H. Sasabe, ed., CMC, Tokyo, 1987, pp. 5–54.Google Scholar
  30. [20]
    Z. Vardeny, E. Ehrenfreund, O. Brafman, M. Nowak, H. Schaffer, A.J. Heeger, and F. Wudl, Phys. Rev. Lett. 56, 671 (1986).ADSCrossRefGoogle Scholar
  31. [21]
    D.D.C. Bradley, R.H. Friend, H. Linderberger, and S. Roth, in ref. 1c.Google Scholar
  32. [22]
    F.L. Pratt, K.S. Wong, W. Hayes, and D. Bloor, in ref. 1c.Google Scholar
  33. [23]
    A.J. Epstein, in ref 1b, pp. 1041-1097.Google Scholar
  34. [24]
    J.L. Brédas and G.B. Street, Acc. Chem. Res. 18, 309 (1985).CrossRefGoogle Scholar
  35. [25]
    D. Moses, A. Denenstein, J. Chen, A.J. Heeger, P. MacAndrew, T. Woerner, A.G. MacDiarmid et Y.W. Park, Phys. Rev. B 25, 7652 (1982).ADSCrossRefGoogle Scholar
  36. [26]
    T.C. Chung, F. Moraes, J.D. Flood et AJ. Heeger, Phys. Rev. B 29, 2341 (1984).ADSCrossRefGoogle Scholar
  37. J. Chen, T.C. Chung, F. Moraes et A.J. Heeger, Solid State Commun. 53, 757 (1985).ADSCrossRefGoogle Scholar
  38. [27]
    E.J. Mele et M.J. Rice, Phys. Rev. B 15, 5397 (1981).ADSCrossRefGoogle Scholar
  39. A.J. Epstein, H. Rommelmann, R. Bigelow, H.W. Gibson, D.M. Hoffmann et D.B. Tanner, Phys. Rev. Lett. 50, 1866 (1983).ADSCrossRefGoogle Scholar
  40. [28]
    K. Ehinger, S. Summerfield, W. Bauhofer, and S. Roth, J. Phys. C: Solid State Phys. 17, 3753 (1984).ADSCrossRefGoogle Scholar
  41. [29]
    X.Q. Yang, D.B. Tanner, A. Feldblum, H.W. Gibson, M.J. Rice, and A.J. Epstein, Mol. Cryst. Liq. Cryst. 117, 267 (1985).CrossRefGoogle Scholar
  42. [30]
    J. Chen, T.C. Chung, F. Moraes, and A.J. Heeger, Solid State Commun. 53, 757 (1985).ADSCrossRefGoogle Scholar
  43. [31]
    S. Kivelson and A.J. Heeger, Phys. Rev. Lett. 55, 308 (1985).ADSCrossRefGoogle Scholar
  44. [32]
    J.L. Brédas, B. Thémans, J.G. Fripiat, J.M. André et R.R. Chance, Phys. Rev. B 29, 6761 (1984).ADSCrossRefGoogle Scholar
  45. [33]
    J.C. Scott, M. Krounbi, P. Pfluger, and G.B. Street, Phys. Rev. B 28, 2140 (1983).ADSCrossRefGoogle Scholar
  46. J.C. Scott, J.L. Brédas, K. Yakushi, P. Pfluger et G.B. Street, Synth. Met. 9, 165 (1984).CrossRefGoogle Scholar
  47. [34]
    K. Yakushi, L.J. Lauchlan, G.B. Street, and J.L. Brédas, J. Chem. Phys. 81, 4133 (1984).ADSCrossRefGoogle Scholar
  48. [35]
    T.C. Chung, J.H. Kaufman, A.J. Heeger et F. Wudl, Phys. Rev. B 30, 702 (1984).ADSCrossRefGoogle Scholar
  49. [36]
    G. Crecelius, M. Stamm, J. Fink, and J.J. Ritsko, Phys. Rev. Lett. 50, 1498 (1983).ADSCrossRefGoogle Scholar
  50. [37]
    D.D.C. Bradley, G.P. Evans, and R.H. Friend, Synth. Met. 17, 651 (1987).CrossRefGoogle Scholar
  51. L.D. Kispert, J. Joseph, J. Tang, M.K. Bowman, G.H. Van Brakel, and J.R. Norris, Synth. Met. 17, 617 (1987).CrossRefGoogle Scholar
  52. [38]
    R.H. Friend and J.R.M. Giles, Synth. Met. 10, 377 (1985).CrossRefGoogle Scholar
  53. [39]
    G. Harbeke, E. Meier, W. Kobel, M. Egli, H. Kiess, and E. Tosatti, Solid State Commun. 55, 419 (1985).ADSCrossRefGoogle Scholar
  54. [40]
    A.G. Green and A.E. Woodhead, J. Chem. Soc. 2388 (1910).Google Scholar
  55. R. de Surville, M. Josefowicz, L.T. Yu, J. Périchon, and R. Buvet, Electrochim. Acta 13, 1451 (1968).CrossRefGoogle Scholar
  56. T. Kobayashi, H. Yoneyama, and H. Tamura, J. Electroanal. Chem. 161, 419 (1984).CrossRefGoogle Scholar
  57. J.P. Travers, J. Chroboczek, F. Devreux, F. Genoud, M. Nechtschein, A. Syed, E.M. Genies, and C. Tsintsavis, Mol. Cryst. Liq. Cryst. 121, 195 (1985).CrossRefGoogle Scholar
  58. [41]
    J.C. Chiang and A.G. MacDiarmid, Synth. Met. 13, 193 (1986) and references therein.CrossRefGoogle Scholar
  59. [42]
    A.G. MacDiarmid, J.C. Chiang, A.F. Richter, and AJ. Epstein, Synth. Met. 18, 285 (1987).CrossRefGoogle Scholar
  60. [43]
    J.M. Ginder, A.F. Richter, A.G. MacDiarmid, and A.J. Epstein, to be published.Google Scholar
  61. [44]
    A.J. Epstein, J.M. Ginder, F. Zuo, R.W. Bigelow, H.S. Woo, D.B. Tanner, A.F. Richter, W.S. Huang, and A.G. MacDiarmid, Synth. Met. 18, 303 (1987).CrossRefGoogle Scholar
  62. [45]
    G. Wnek, Polymer Prepr. 22, 277 (1986)Google Scholar
  63. G. Wnek, Synth. Met. 15, 213 (1986).CrossRefGoogle Scholar
  64. [46]
    H. Linschitz, J. Rennert, and T.M. Korn, J. Am. Chem. Soc. 76, 5839 (1954).CrossRefGoogle Scholar
  65. [47]
    S. Stafström, J.L. Brédas, AJ. Epstein, H.S. Woo, D.B. Tanner, W.S. Huang, and A.G. MacDiarmid, submitted for publication; J.L. Brédas, in ref. 1c.Google Scholar
  66. [48]
    D.S. Boudreaux, R.R. Chance, J.F. Wolf, L.W. Shacklette, J.L. Brédas, B. Thémans, J.M. André, and R. Silbey, J. Chem. Phys. 85, 4584 (1986).ADSCrossRefGoogle Scholar
  67. S. Stafström and J.L. Brédas, Synth. Met. 14, 297 (1986).CrossRefGoogle Scholar
  68. [49]
    N.S. Sariciftci, H. Neugebauer, and H. Kuzmany, in ref. 1c.Google Scholar
  69. [50]
    A.P. Monkman and D. Bloor, in ref. 1c.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • J. L. Brédas
    • 1
  1. 1.Laboratoire de Chimie Théorique Appliquée, Centre de Recherches sur les Matériaux AvancésFacultés Universitaires Notre-Dame de la PaixNamurBelgium

Personalised recommendations