Chemical Reactions, Dynamics, and Laser Spectroscopy

  • Norman H. March
  • Joseph F. Mucci


Thermodynamics can often predict that a reaction should proceed almost to completion, but that reaction is not seen in the laboratory. For example, H2 and O2 can be kept in contact with one another without forming noticeable quantities of water, even though this reaction is accompanied by a free-energy decrease. The message here is that the rate of the reaction governs whether the formation of the products will or will not be observed.


Lower Unoccupied Molecular Orbital Reaction Coordinate Laser Spectroscopy Internuclear Distance Potential Energy Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. W. Atkins, Physical Chemistry, 3rd Ed., W. H. Freeman, New York (1986).Google Scholar
  2. P. W. Atkins, Quanta, 2nd Ed., Oxford University Press, Oxford (1991).Google Scholar
  3. J. W. Boag and E. J. Hart, Nature 197, 45 (1963).CrossRefGoogle Scholar
  4. H. Eyring, Chem. Revs. 17, 651 (1935).CrossRefGoogle Scholar
  5. H. Eyring and M. Polanyi, Z. Physik Chem. B12, 279 (1931).Google Scholar
  6. W. H. Flygare, Molecular Structure and Dynamics, Prentice-Hall, Englewood Cliffs, NJ (1978).Google Scholar
  7. K. Fukui, Theory of Orientation and Stereoselection, Springer-Verlag, Berlin (1975).CrossRefGoogle Scholar
  8. K. Fukui, Science 218, 747 (1987).CrossRefGoogle Scholar
  9. K. Fukui, T. Yonezawa, C. Nagata, and H. Shingu, J. Chem. Phys. 22, 1433 (1954).CrossRefGoogle Scholar
  10. K. Kukui, T. Yonezawa, and H. Shingu, J. Chem. Phys. 20, 722 (1952).CrossRefGoogle Scholar
  11. E. J. Hart and J. W. Boag, J. Am. Chem. Soc. 84, 4080 (1962).CrossRefGoogle Scholar
  12. J. M. Hollas, Modern Spectroscopy, John Wiley and Sons, New York (1987).Google Scholar
  13. G. Klopman, J. Am. Chem. Soc. 90, 223 (1968).CrossRefGoogle Scholar
  14. M. Kneba, U. Wellhausen, and J. Wolfrum, Ber. Bunsenges Phys. Chem. 83, 940 (1979).CrossRefGoogle Scholar
  15. E. C. Kooyman and E. Farenhorst, Trans. Faraday Soc. 49, 58 (1953).CrossRefGoogle Scholar
  16. K. J. Laidler, Chemical Kinetics, 3rd Ed., Harper and Row, New York (1987).Google Scholar
  17. C. L. Liotta, Tetrahedron Lett. 8, 519, 523 (1975).CrossRefGoogle Scholar
  18. F. London, Z. Elektrochem. 35, 552 (1929).Google Scholar
  19. H. C. Longuet-Higgins and E. W. Abrahamson, J. Am. Chem. Soc. 87, 2045 (1965).CrossRefGoogle Scholar
  20. J. P. Lowe, Quantum Chemistry, Academic Press, New York (1978).Google Scholar
  21. D. A. McQuarrie, Statistical Mechanics, Harper and Row, New York (1976).Google Scholar
  22. P. Morse, Phys. Rev. 34, 57 (1929).CrossRefGoogle Scholar
  23. R. S. Mulliken, J. Chem. Phys. 3, 573 (1935).CrossRefGoogle Scholar
  24. R. S. Mulliken, J. Am. Chem. Soc. 64, 811 (1952).CrossRefGoogle Scholar
  25. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).CrossRefGoogle Scholar
  26. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).Google Scholar
  27. R. G. Pearson, J. Amer. Chem. Soc. 85, 3533 (1963).CrossRefGoogle Scholar
  28. R. G. Pearson, Science 151, 172 (1966).CrossRefGoogle Scholar
  29. H. Pelzer and E. Wigner, Z. Physik Chem. B15, 445 (1932).Google Scholar
  30. R. I. Platzman, Basic Mechanisms in Radiology, National Research Council Publication 305, Washington, D.C. (1953).Google Scholar
  31. S. Sato, J. Chem. Phys. 23, 592, 2465 (1955).CrossRefGoogle Scholar
  32. A. Sreitwieser Jr., Molecular Orbital Theory, John Wiley and Sons, New York (1961).Google Scholar
  33. J. I. Steinfeld, Molecules and Radiation: An Introduction to Modern Spectroscopy, 2nd Ed., MIT Press, Cambridge, MA (1985).Google Scholar
  34. K. B. Wiberg, Physical Organic Chemistry, John Wiley and Sons, New York (1964).Google Scholar
  35. R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Academic Press, New York (1970).Google Scholar
  36. R. N. Zare and R. B. Bernstein, Physics Today 33, 43 (November 1980).CrossRefGoogle Scholar

Further Reading

  1. M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York (1969).Google Scholar
  2. H. F. Hameka, Quantum Theory of the Chemical Bond, Hafner Press-MacMillan, New York (1975).Google Scholar
  3. K. Higasi, H. Baba, and A. Rembaum, Quantum Organic Chemistry, Interscience Publishers, New York (1965).Google Scholar
  4. R. E. Lehr and A. P. Marchand, Orbital Symmetry, Academic Press, New York (1972).Google Scholar
  5. A. Liberies, Introduction to Theoretical Organic Chemistry, MacMillan, New York (1968).Google Scholar
  6. R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity, Oxford University Press, Oxford (1987).Google Scholar
  7. R. McWeeny, Coulson’s Valence, 3rd Ed., Oxford University Press, Oxford (1979).Google Scholar
  8. J. N. Murrell, S. F. A. Kettle, and J. M. Tedder, The Chemical Bond, 2nd Ed., John Wiley and Sons, New York (1985).Google Scholar
  9. W. G. Richards, Quantum Pharmacology, 2nd Ed., Butterworths, London (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Norman H. March
    • 1
  • Joseph F. Mucci
    • 2
  1. 1.Oxford UniversityOxfordEngland
  2. 2.Vassar CollegePoughkeepsieUSA

Personalised recommendations