Molecular Orbital Methods and Polyatomic Molecules

  • Norman H. March
  • Joseph F. Mucci

Abstract

In the previous chapter we were largely concerned with those properties of molecules that are associated with their rotational and vibrational degrees of freedom. In the present chapter, we again take up electronic structure, discussed earlier in Chapter 2 for diatomic molecules and in Chapter 4 via electron density theory. Though polyatomic molecules were embraced by the electron density treatment, it is still of importance to describe orbital theories of such molecules, which is the main purpose of the present chapter.

Keywords

Methane Benzene Hydrocarbon Pyrolysis Acetylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. I. Al-Joburg and D. W. Turner Jr., J. Chem. Soc. 43, 616 (1965).CrossRefGoogle Scholar
  2. N. C. Baird and M. J. S. Dewar, J. Chem. Phys. 50, 1262 (1969).CrossRefGoogle Scholar
  3. L. C. Balbás, A. Rubio, J. A. Alonso, N. H. March, and G. Borstel, J. Phys. Chem. Solids 49, 1013 (1988).CrossRefGoogle Scholar
  4. W. Bingel, J. Chem. Phys. 30, 1250, 1254 (1959).CrossRefGoogle Scholar
  5. R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc. 97, 1285 (1975).CrossRefGoogle Scholar
  6. R. Botter and H. M. Rosenstock, J. Res. Nat. Bur. Stand. 73a, 313 (1969).CrossRefGoogle Scholar
  7. I. D. Clark and D. C. Frost, J. Am. Chem. Soc. 89, 244 (1967).CrossRefGoogle Scholar
  8. W. Cochran, Acta Crys. 9, 924 (1956).CrossRefGoogle Scholar
  9. C. A. Coulson, Valence, 2nd Ed., Oxford University Press, New York, Oxford (1961).Google Scholar
  10. M. A. Copian, J. H. Moore, and J. A. Tossell, J. Chem. Phys. 68, 329 (1978).CrossRefGoogle Scholar
  11. C. W. N. Cumper, Wave Mechanics for Chemists, Academic, New York (1966).Google Scholar
  12. M. J. S. Dewar and E. Haselbach, J. Am. Chem. Soc. 92, 590 (1970).CrossRefGoogle Scholar
  13. M. J. S. Dewar and G. Klopman, J. Am. Chem. Soc. 89, 3089 (1967).CrossRefGoogle Scholar
  14. R. N. Dixon, G. Duxbury, M. Horani, and J. Rostas, Mol. Phys. 22, 977 (1971).CrossRefGoogle Scholar
  15. H. H. Greenwood, Computing Methods in Quantum Organic Chemistry, Wiley-Interscience, New York (1972).Google Scholar
  16. G. Herzberg and E. Teller, Z. Phys. Chem. B21, 410 (1933).Google Scholar
  17. P. J. Hiett, F. Flores, P. J. Grout, N. H. March, A. Martin Rodero, and G. Senatore, Surf. Sci. 140, 400 (1984).CrossRefGoogle Scholar
  18. R. Hoffmann, J. Chem. Phys. 39, 1397 (1963).CrossRefGoogle Scholar
  19. J. M. Hollas, High Resolution Spectroscopy, Butterworths, London (1982).Google Scholar
  20. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).CrossRefGoogle Scholar
  21. L. Karlsson, L. Mattsson, R. Jadry, T. Bergmark, and K. Siegbahn, Phys. Scrip. 14, 230 (1976).CrossRefGoogle Scholar
  22. W. Kohn and L. J. Sham, Phys. Rev. 140, Al 133 (1965).CrossRefGoogle Scholar
  23. J. P. Lowe, Quantum Chemistry, Academic, New York (1978).Google Scholar
  24. N. H. March, Acta Crys. 5, 187 (1952).CrossRefGoogle Scholar
  25. N. H. March, Specialist Periodical Reports, Theoretical Chemistry, Vol. A, Royal Society of Chemistry, London (1981).Google Scholar
  26. I. E. McCarthy and E. Weigold, Contemporary Physics 24, 163 (1983).CrossRefGoogle Scholar
  27. A. D. McLean and M. Yoshimine, Tables of Linear Molecule Wave Functions, IBM, Hopewell Junction, New York (1967).Google Scholar
  28. R. McWeeny, Coulson’s Valence, 3rd Ed., Oxford University Press, Oxford (1979).Google Scholar
  29. A. J. Merer and R. S. Mulliken, Chem. Rev. 69, 639 (1969).CrossRefGoogle Scholar
  30. J. N. Murrell and A. J. Harget, Semi-Empirical Self-Consistent Field Theory, Wiley-Interscience, New York (1972).Google Scholar
  31. W. von Niessen, L. S. Cederbaum, and W. P. Kraemer, J. Chem. Phys. 65, 1378 (1976).CrossRefGoogle Scholar
  32. R. Pariser, J. Chem. Phys. 21, 568 (1953).CrossRefGoogle Scholar
  33. R. G. Parr, The Quantum Theory of Molecular Electronic Structure, Benjamin, New York (1963).Google Scholar
  34. J. A. Pople, Trans. Faraday Soc. 49, 1375 (1953).CrossRefGoogle Scholar
  35. J. A. Pople, G. P. Santry, and G. A. Segal, J. Chem. Phys. 43, 5129 (1965).Google Scholar
  36. J. A. Pople and G. A. Segal, J. Chem. Phys. 43 (suppl) 136 (1965).CrossRefGoogle Scholar
  37. J. A. Pople and G. A. Segal, J. Chem. Phys. 44, 3289 (1966).CrossRefGoogle Scholar
  38. R. Renner, Z. Phys. 92, 172 (1934).CrossRefGoogle Scholar
  39. W. G. Richards. Quantum Pharmacology, 2nd Ed., Butterworths, London (1983).Google Scholar
  40. W. G. Richards and D. L. Cooper, Ab Initio MO Calculations, 2nd Ed., Clarendon Press, Oxford (1983).Google Scholar
  41. L. Salem, Molecular Orbital Theory of Conjugated Systems, Benjamin, New York (1966).Google Scholar
  42. J. M. Schulman and J. W. Moskowitz, J. Chem. Phys. 47, 3491 (1967).CrossRefGoogle Scholar
  43. J. C. Slater, Phys. Rev. 81, 385 (1951).CrossRefGoogle Scholar
  44. B. Stenhouse, P. J. Grout, N. H. March, and J. Wenzel, Phil. Mag. 36, 129 (1977).CrossRefGoogle Scholar
  45. A. Strietwieser, Molecular Orbital Theory for Organic Chemists, John Wiley and Sons, New York (1961).Google Scholar
  46. D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, Molecular Photoelectron Spectroscopy, John Wiley and Sons, London (1970).Google Scholar
  47. J. H. Van Vleck and P. C. Cross, J. Chem. Phys. 1, 357 (1933).CrossRefGoogle Scholar
  48. B. G. Williams (ed.) Compton Scattering: The Investigation of Electron Momentum Distribution, McGraw-Hill, New York (1977).Google Scholar
  49. M. C. Zerner, Theor. Chim. Acta 32, 111 (1973);CrossRefGoogle Scholar
  50. M. C. Zerner, Theor. Chim. Acta 53, 21 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Norman H. March
    • 1
  • Joseph F. Mucci
    • 2
  1. 1.Oxford UniversityOxfordEngland
  2. 2.Vassar CollegePoughkeepsieUSA

Personalised recommendations