Molecular Parameters Determined by Spectroscopic Methods

  • Norman H. March
  • Joseph F. Mucci


So far, we have been concerned primarily with electronic properties of molecules when the nuclei are held fixed. However, other properties of molecules are of considerable interest; e.g., vibrational and rotational degrees of freedom are unique to molecules as opposed to atoms. In the present chapter, we shall begin with a discussion of rotational energy levels of the simplest case, namely diatomic and triatomic linear molecules. We shall see that molecular moments of inertia are important parameters, and this topic will be discussed in relation to pure rotational spectra as observed in the infrared, millimeter wave, and microwave regions. Even from this simplest case, it will be seen as important for the interpretation of such data that one must also consider the effect of molecular vibration on the rotational spectra. This leads into a fuller discussion of vibrational spectra of polyatomic molecules, and again, briefly, the relation to observation. In each case selection rules are central and are given some prominence in this chapter.


Electron Spin Resonance Electron Spin Resonance Spectrum Selection Rule Vibrational Level Diatomic Molecule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. A. Ballik and D. A. Ramsay, Astrophys. J. 137, 84 (1963).CrossRefGoogle Scholar
  2. C. N. Banwell, Fundamentals of Molecular Spectroscopy, McGraw-Hill, New York (1966).Google Scholar
  3. A. A. Bothner-By and C. Naar-Colin, Ann. N.Y. Acad. Sci. 70, 833 (1958).CrossRefGoogle Scholar
  4. R. N. Dixon, Spectroscopy and Structure, John Wiley and Sons, New York (1965).Google Scholar
  5. W. H. Flygare, Molecular Structure and Dynamics, Prentice-Hall, Englewood Cliffs, NJ (1978).Google Scholar
  6. J. M. Hollas, High Resolution Spectroscopy, Butterworths, London (1982).Google Scholar
  7. J. M. Hollas, Modern Spectroscopy, John Wiley and Sons, New York (1987).Google Scholar
  8. L. Karlsson, L. Mattson, R. Jadony, T. Bergmark, and K. Siegbahn, Physica Scripta 14, 230 (1976).CrossRefGoogle Scholar
  9. J. P. Lowe, Quantum Chemistry, Academic Press, New York (1978).Google Scholar
  10. N. H. March and A. M. Murray, Phys. Rev. 120, 830 (1960).CrossRefGoogle Scholar
  11. J. A. Pople, W. G. Schneider, and H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, New York (1959).Google Scholar
  12. J. M. Schulman and J. W. Moskowitz, J. Chem. Phys. 47, 3491 (1967).CrossRefGoogle Scholar
  13. A. Streitwieser Jr., Molecular Orbital Theory, John Wiley and Sons, New York (1961).Google Scholar
  14. Von Niessen, L. S. Cederbaum and W. P. Kraemer, J. Chem. Phys. 65, 1378 (1976).CrossRefGoogle Scholar
  15. D. H. Whiffen, Spectroscopy, Longmans, London (1966).Google Scholar
  16. R. Zahradnik and E. Polak, J. Phys. Chem. 84, 3312 (1980).CrossRefGoogle Scholar

Further Reading

  1. P. W. Atkins, Molecular Quantum Mechanics, 2nd Ed., Oxford University Press, Oxford (1983).Google Scholar
  2. P. W. Atkins, Quanta, 2nd Ed., Oxford University Press, Oxford (1991).Google Scholar
  3. I. N. Levine, Molecular Spectroscopy, John Wiley and Sons-, New York (1975).Google Scholar
  4. J. I. Steinfeld, Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy, 2nd Ed., MIT Press, Cambridge, MA (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Norman H. March
    • 1
  • Joseph F. Mucci
    • 2
  1. 1.Oxford UniversityOxfordEngland
  2. 2.Vassar CollegePoughkeepsieUSA

Personalised recommendations