Molecular Interactions

  • Norman H. March
  • Joseph F. Mucci


So far we have been concerned with forces within an isolated molecule. We now turn to the forces between molecules; that is to intermolecular forces. Compelling qualitative evidence that such forces must exist comes from the very existence of condensed phases (i.e., liquids and solids) and the fact that such phases resist further compression. It is clear from all this that both attractive and repulsive forces must be operating. It is important in this context to note that:
  1. 1.

    Attractive forces prove to be dominant at long range. Here, the meaning of long range is such that the overlap of electronic distributions in the molecules that are interacting can be neglected.

  2. 2.

    Repulsive contributions to the intermolecular forces are dominant when molecules are forced to within small separations of each other, i.e., into regions where there is significant overlap of the respective electron charge clouds in the molecules.



Hard Sphere Pair Potential Intermolecular Force Virial Coefficient Potential Energy Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. W. Atkins, Quanta, 2nd Ed., Oxford University Press, New York (1991).Google Scholar
  2. P. W. Atkins, Physical Chemistry, 2nd Ed., Freeman and Co., San Francisco (1982).Google Scholar
  3. J. A. Barker, R. O. Watts, J. K. Lee, T. P. Schafer, and Y. T. Lee, J. Chem. Phys. 61, 3081 (1974).CrossRefGoogle Scholar
  4. R. S. Berry, S. A. Rice, and J. Ross, Physical Chemistry, John Wiley and Sons, New York (1980).Google Scholar
  5. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).CrossRefGoogle Scholar
  6. H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).CrossRefGoogle Scholar
  7. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press (1939).Google Scholar
  8. C. W. N. Cumper, Wave Mechanics for Chemists, Academic Press, New York (1966).Google Scholar
  9. J. C. Davis, Advanced Physical Chemistry, Ronald Press, New York (1965).Google Scholar
  10. P. A. Egelstaff, F. Barocchi, and M. Zoppi, Phys. Rev. A31, 2732 (1985).CrossRefGoogle Scholar
  11. D. Eisenberg and W. Kauzmann, The Structure of Properties of Water, Oxford University Press (1969).Google Scholar
  12. J. E. Enderby, J. Phys. C15, 4609 (1982).Google Scholar
  13. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York (1954).Google Scholar
  14. W. G. Hoover and M. Ross, Contemp. Phys. 12, 339 (1971)CrossRefGoogle Scholar
  15. M. D. Johnson and N. H. March, Phys. Lett. 3, 313 (1963).CrossRefGoogle Scholar
  16. W. Kauzmann, Kinetic Theory of Gases, W. A. Benjamin, New York (1966).Google Scholar
  17. W. Kauzmann, Thermodynamics and Statistics: With Applications to Gases, W. A. Benjamin, Inc., New York (1967).Google Scholar
  18. A. M. Lesk, Introduction to Physical Chemistry, Prentice-Hall, Englewood Cliffs, NJ (1982).Google Scholar
  19. J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley and Sons, New York (1940).Google Scholar
  20. F. Mohling, Statistical Mechanics, John Wiley and Sons, New York (1982).Google Scholar
  21. J. N. Murrell, S. F. A. Kettle, and J. M. Tedder, The Chemical Bond, 2nd Ed., John Wiley and Sons, New York (1985).Google Scholar
  22. J. N. Murrell, S. F. A. Kettle, and J. M. Tedder, Valence Theory, 2nd Ed., John Wiley and Sons, New York (1970).Google Scholar
  23. F. Perrot and N. H. March, Phys. Rev. A41, 4521 (1990).CrossRefGoogle Scholar
  24. L. Reatto, Phil. Mag. 58, 37 (1988).Google Scholar
  25. M. Rigby, E. B. Smith, W. A. Wakeham, and G. C. Maitland, The Forces Between Molecules, Oxford University Press (1986).Google Scholar
  26. G. Robinson, N. H. March, and R. C. Perrin, Int. J. Quantum Chem. 5, 271 (1971).Google Scholar
  27. M. Ross, J. Chem. Phys. 90, 1209 (1989).CrossRefGoogle Scholar
  28. M. Ross, H. K. Mao, P. M. Bell, and J. A. Xu, J. Chem. Phys. 85, 1028 (1986).CrossRefGoogle Scholar
  29. D. J. Royer, Bonding Theory, McGraw-Hill, New York (1968).Google Scholar

Further Reading

  1. B. I. Blaney and G. E. Ewing, Ann. Rev. Phys. Chem. 11, 553 (1976).CrossRefGoogle Scholar
  2. H. Margenau and N. R. Kestner, Intermodular Forces, Pergamon Press, Oxford (1969).Google Scholar
  3. H. Pauly and J. P. Toennies, Adv. Atomic and Molecular Phys. 1, 195 (1965).CrossRefGoogle Scholar
  4. J. I. Steinfeld, Molecules and Radiation’, An Introduction to Modern Spectroscopy, 2nd ed., MIT Press, Cambridge, MA (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Norman H. March
    • 1
  • Joseph F. Mucci
    • 2
  1. 1.Oxford UniversityOxfordEngland
  2. 2.Vassar CollegePoughkeepsieUSA

Personalised recommendations