Advertisement

Methyl Insufficiency in Carcinogenesis

  • Lionel A. Poirier

Abstract

In 1946 Copeland and Salmon found that the chronic administration of a choline-deficient diet to rats led to the formation of liver cancer1. Thus began one of the most prolonged and controversial areas of study in the field of chemical carcinogenesis. At first, such results were not regarded as surprising, for at the time other dietary deficiencies had also been shown to enhance carcinogenesis2,3. However, subsequent studies showed that the peanut meal diets used to obtain the choline deficiency were in fact contaminated with aflatoxin and that the original strain of rats used by Salmon’s group appeared to undergo genetic drift such that the original results in tumor formation by choline deficiency alone could no longer be repeated4–6. Although the original observations became doubted, they did serve to focus interests of other groups on the possible role of labile methyl group deficiency in carcinogenesis. Thus, Farber et al.7 showed that ethionine, an antagonist of the labile methyl group donor methionine also caused liver cancer in rats. Together, methionine and choline constitute the chief dietary sources of methyl groups. The Millers2 postulated that a labile methyl group insufficiency might by involved in hepatocarcinogenesis by the monomethyl aminoazo dyes. However, from 1960 to 1975, with the exception of the group of P. Newberne6, little research was conducted on the possible etiological role of dietary methyl donors in carcinogenesis. In the early 1970s, this group showed that several biochemical effects of hepatocarcinogens could be enhanced by the administration of diets marginally deficient in lipotropes, including methionine and choline8. Also, in the late 1970s, the group of Lombardi and Shinozuka showed that choline-devoid diets enhanced the activities of several hepatocarcinogens9–11 (Table 1).

Keywords

Methyl Donor Chemical Carcinogenesis Peanut Meal B6C3F1 Mouse Choline Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. Copeland and W. D. Salmon, The occurrence of neoplasms in the liver, lungs, and other tissues of rats as a result of prolonged choline deficiency, Am. J. Pathol. 22:1059 (1946).Google Scholar
  2. 2.
    J. A. Miller and E. C. Miller, The carcinogenic aminoazo dyes, Adv. Cancer Res. 1:339 (1953).PubMedCrossRefGoogle Scholar
  3. 3.
    R. C. Moon and R. G. Mehta, Anticarcinogenic effects of retinoids in animals, in: “Essential Nutrients in Carcinogenesis”, L. A. Poirier, P. M. Newberne, and M. W. Pariza, eds., Plenum Press, New York (1986).Google Scholar
  4. 4.
    W. D. Salmon and P. M. Newberne, Occurrence of hepatomas in rats fed diets containing peanut meal as a major source of protein, Cancer Res. 23:571 (1963).Google Scholar
  5. 5.
    P. M. Newberne, W. W. Carlton and G. N. Wogan, Hepatomas in rats and hepatorenal injury induced by peanut meal in Aspergillus flavus extract, Pathol. Vet. 1:105 (1964).Google Scholar
  6. 6.
    P. M. Newberne, Lipotropic factors and oncogenesis, in: “Essential Nutrients in Carcinogenesis”, L. A. Poirier, P. M. Newberne, and M. W. Pariza, eds., Plenum Press, New York (1986).Google Scholar
  7. 7.
    E. Farber, Carcinoma of the liver in rats fed ethionine, Arch. Pathol. 66:445 (1956).Google Scholar
  8. 8.
    A. E. Rogers and P. M. Newberne, Lipotrope deficiency in experimental carcinogenesis, Nutr. Cancer 2:104 (1980).CrossRefGoogle Scholar
  9. 9.
    B. Lombardi and H. Shinozuka, Enhancement of 2-AAF liver carcinogenesis in rats fed a choline-deficient diet, Int. J. Cancer 23:565 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Shinozuka, S. L. Katyal and B. Lombardi, Azaserine carcinogenesis: Organ susceptibility change in rats fed a diet devoid of choline, Int. J. Cancer 22:36 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Shinozuka, S. L. Katyal and M. I. R. Perera, Choline Deficiency and Chemical Carcinogenesis, in: “Essential Nutrients in Carcinogenesis”, L. A. Poirier, P. M. Newberne, and M. W. Pariza, eds., Plenum Press, New York (1986).Google Scholar
  12. 12.
    L. A. Poirier, The role of Methionine in Carcinogenesis In Vivo, in: “Essential Nutrients in Carcinogenesis”, L. A. Poirier, P. M. Newberne, and M. W. Pariza, eds., Plenum Press, New York (1986).Google Scholar
  13. 13.
    E. Farber, Ethionine carcinogenesis, Adv. Cancer Res. 7:383 (1963).PubMedCrossRefGoogle Scholar
  14. 14.
    L. A. Poirier and K. H. Hoover, Liver tumor formation in male B6C3F1 mice fed methyl-deficient, amino acid-defined diets with and without diethylnitrosamine initiation, Proc. Am. Assoc. Cancer Res. 27:129 (1986).Google Scholar
  15. 15.
    N. Shivapurkar, K. L. Hoover and L. A. Poirier, Effect of methionine and choline on liver tumor promotion by phenobarbital and DDT in diethylnitrosamine-initiated rats, Carcinogenesis 7:547 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. B. Mikol, K. L. Hoover, D. Creasia and L. A. Poirier, Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets, Carcinogenesis 4:1619 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    A. K. Ghoshal and E. Farber, The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens, Carcinogenesis 5:1367 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    S. Yokoyama, M. A. Sells, T. V. Reddy and B. Lombardi, Hepatocarcinogenic and promoting action of a choline-devoid diet in the rat, Cancer Res. 45:2834 (1985).PubMedGoogle Scholar
  19. 19.
    K. L. Hoover, P. Lynch and L. A. Poirier, Profound postinitiation enhancement by short-term methionine, choline, vitamin B12, and folate deficiency of hepatocarcinogenesis in F-344 rats given a single low dose of diethylnitrosamine, J. Natl. Cancer. Inst. 73:1327 (1984).PubMedGoogle Scholar
  20. 20.
    L. Belanger, P. Baril and M. Guertin, Oncodevelopmental and hormonal regulation of alpha-fetoprotein gene expression, Adv. Enzyme Regulation 21:73 (1983).CrossRefGoogle Scholar
  21. 21.
    H. Gourdeau, Ph.D. Thesis, Université de Laval, Quebec (1986).Google Scholar
  22. 22.
    Y. B. Mikol and L. A. Poirier, An inverse correlation between hepatic ornithine decarboxylase and S-adenosylmethionine in rats, Cancer Letters 13:195 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    S. H. Mudd and H. L. Levy, Disorders of Transsuifuration, in: “The Metabolic Basis of Inherited Disease”, J. B. Stansbury, J. B. Wyngaarden, D. S. Frederickson, J. L. Goldstein, and M. S. Brown, eds., McGraw-Hill, New York (1983).Google Scholar
  24. 24.
    D. R. Hoffman, J. A. Hanig and W. E. Cornatzer, Effects of a methyldeficient diet on rat liver phosphatidylcholine biosynthesis, Can. J. Biochem. 59:543 (1981).PubMedGoogle Scholar
  25. 25.
    P. K. Chiang and G. L. Cantoni, Perturbations of biochemical transmethylations by 3-deazaadenosine, Biochem. Pharmacol. 28:1897 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    L. A. Poirier, P. H. Grantham, and A. E. Rogers, The effects of a marginally lipotrope-deficient diet on the hepatic levels of S-adeno-sylmethionine and on the urinary metabolites of 2-acetylaminofluorene in rats, Cancer Res. 37:744 (1977).PubMedGoogle Scholar
  27. 27.
    N. S. Shivapurkar, M. J. Wilson, K. L. Hoover, Y. B. Mikol, D. Creasia and L. A. Poirier, Hepatic DNA methylation and liver tumor formation in male C3H mice fed methionine-and choline-deficient diets, J. Natl. Cancer Inst. 77:213 (1986).PubMedGoogle Scholar
  28. 28.
    Y. S. S. Buehring, L. A. Poirier and E. L. R. Stoksad, Folate deficiency in the livers of diethylnitrosamine-treated rats, Cancer Res. 36:2775 (1976).PubMedGoogle Scholar
  29. 29.
    Z. Brada, S. Bulba and N. H. Altman, The influence of DL-methionine on the metabolism of S-adenosylethionine in rats chronically treated with DL-ethionine, Cancer Res. 36:1573 (1976).PubMedGoogle Scholar
  30. 30.
    F. Feo, R. Garcea, L. Daino, P. Pascale, S. Frassetto, P. Cozzolino, M. G. Vannini, M. E. Ruggiu, M. M. Simile and M. Puddu, S-adenosyl-L-methionine antipromotion and antiprogression effect in hepatocarcinogenesis. Its association with inhibition of gene expression, this volume.Google Scholar
  31. 31.
    E. Wainfain, M. L. Moller, F. A. Maschio and M. E. Balis, Time-dependent ethionine-induced changes in rat liver transfer RNA methylation, Cancer Res. 35:2830 (1977).Google Scholar
  32. 32.
    E. Wainfain, M. Dizik, M. Hluboky and M. E. Balis, Altered tRNA methylation in rats and mice fed lipotrope-deficient diets, Carcinogenesis 7:473 (1986).CrossRefGoogle Scholar
  33. 33.
    D. N. Cooper, Eukaryotic DNA methylation, Hum. Genet. 64:315 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    A. D. Riggs and P. A. Jones, 5-Methylcytosine, gene regulation, and cancer, Adv. Cancer Res. 40:1 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    P. A. Jones, DNA methylation and cancer, Cancer Res. 46:461 (1986).PubMedGoogle Scholar
  36. 36.
    M. J. Wilson, N. Shivapurkar and L. A. Poirier, Hypomethylation of hepatic nuclear DNA in rats fed with a carcinogenic methyl-deficient diet, Biochem. J. 218:987 (1984).PubMedGoogle Scholar
  37. 37.
    N. Shivapurkar, M. J. Wilson and L. A. Poirier, Hypomethylation of DNA in ethionine-fed rats, Carcinogenesis 5:989 (1984).PubMedCrossRefGoogle Scholar
  38. 38.
    J. D. Brown, M. J. Wilson and L. A. Poirier, Neoplastic conversion of rat liver epithelial cells in culture by ethionine and S-adenosyl-ethionine, Carcinogenesis 4:173 (1983).PubMedCrossRefGoogle Scholar
  39. 39.
    M. J. Wilson, R. M. Bare, E. D. Kwiecinski and L. A. Poirier, 3-Deazaadenosine induces transformation and DNA hypomethylation in rat liver cells in culture, Proc. Am. Assoc. Cancer Res. 26:506 (1985).Google Scholar
  40. 40.
    M. J. Wilson, L. A. Poirier, K. J. Dunn, D. O. Halverson, L. A. Eader and D. G. Blair, Activation of the c-H-ras oncogene in hepatocellular carcinomas initiated with diethylnitrosamine and promoted with methyl-deficient diets, Fed. Proc. 45:1707 (1986).Google Scholar
  41. 41.
    M. R. Bhave, M. J. Wilson and L. A. Poirier, c-H-ras and c-K-ras gene hypomethylation in the livers and hepatomas of rats fed methyl-deficient amino acid-defined diets, Carcinogenesis in press (1988).Google Scholar
  42. 42.
    M. L. McGeady, C. Jhappan, R. Ascione and G. F. Vande Woude, In vitro methylation of specific regions of the cloned Maloney sarcoma virus genome inhibits its transforming activity, Mol. Cell. Biol. 3:305 (1983).PubMedGoogle Scholar
  43. 43.
    J. Groffen, N. Heiserdamp, G. Blennerhassett and J. R. Stephenson, Regulation of viral and cellular oncogene expression by cytosine methylation, Virology 126:213 (1983).PubMedCrossRefGoogle Scholar
  44. 44.
    B. A. Christy and G. A. Scangos, In vitro methylation of bovine papillomavirus alters its ability to transform mouse cells, Mol. Cell. Biol. 6:2910 (1986).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Lionel A. Poirier
    • 1
  1. 1.Division of Comparative ToxicologyNational Center for Toxicological ResearchJeffersonUSA

Personalised recommendations