Advertisement

The Choline-Devoid Diet Model of Hepatocarcinogenesis in the Rat

  • Benito Lombardi

Abstract

The notion that a choline-devoid (CD) diet is hepatocarcinogenic in the rat has already gone through two historical phases, and is at the beginning of its third (for a detailed account, see ref. 1). In 1946, Copeland and Salmon published the first of a series of papers showing the development of hepatocellular carcinomas (HCCs) in rats chronically fed a CD diet2,3. The finding attracted much attention at the time, since the modalities of the experiments involved no addition to the diet of, or treatment of the animals with, chemical carcinogens. However, subsequent studies by Newberne et al.4,5 cast doubts on whether the diet, and the diet alone, was responsible for the genesis of the tumors, and attributed the latter, instead, to a likely contamination of the diet with aflatoxin B1, a newly discovered6 and most potent hepatocarcinogen in the rat7. In the last few years, the question was reopened by a repetition of the original findings of Copeland and Salmon in three different laboratories8–11. In these instances, both diets and rat’s environment were scrutinized for relevant contamination with chemical carcinogens, with negative results. At the present time, therefore, the conclusion seems unavoidable that CD diets are indeed hepatocarcinogenic, and that the genesis of the tumors resides in effects of these diets on rat liver. However, at least one primary issue awaits resolution, before the CD-diet model of hepatocarcinogenesis can be fully categorized; that is whether the diets act as complete carcinogens, able to initiate de novo liver cells, as well as to promote their evolution to cancer; or whether they merely promote the evolution to cancer of endogenous initiated cells.

Keywords

Fatty Liver Diene Conjugate Chemical Carcinogen Choline Deficiency Hepatic Stimulator Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. M. Newberne, Lipotropic Factors and Oncogenesis, in: “Essential Nutrients in Carcinogenesis”, L. A. Poirier, P. M. Newberne and M. W. Pariza, eds., Plenum Press, New York (1986).Google Scholar
  2. 2.
    D. H. Copeland and W. D. Salmon, The occurrence of neoplasms in the liver, lungs and other tissues of rats as a result of prolonged choline deficiency, Am J. Pathol. 22:1059 (1946).Google Scholar
  3. 3.
    W. D. Salmon and D. H. Copeland, Liver carcinoma and related lesions in chronic choline deficiency, Am. N. Y. Acad. Sci. 57:664 (1954).CrossRefGoogle Scholar
  4. 4.
    VJ. D. Salmon and P. M. Newberne, Occurrence of hepatomas in rats fed diets containing peanut meal as a major source of protein, Cancer Res. 23:571 (1963).Google Scholar
  5. 5.
    P. M. Newberne, Biological activity of the aflatoxins in the domestic and laboratory animals, U. S. Fish Wildlife Serv. Res. Rep. 70:131 (1967).Google Scholar
  6. 6.
    K. Sargeant, R. B. A. Carnaghan and R. Allcroft, Toxic products in groundnuts: chemistry and origin, Chem. Ind. 53:55 (1963).Google Scholar
  7. 7.
    G. N. Wogan, A. S. Paglialunga and P. M. Newberne, Carcinogenic effects of low dietary levels of aflatoxin B in rats, Food Cosmet. Toxicol. 12:681 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    Y. B. Mikol, K. L. Hoover, D. Creasia and L. A. Poirier, Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets, Carcinogenesis 4:1619 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    A. K. Ghoshal and E. Farber, The induction of liver cancer by a dietary deficiency of choline and methionine without added carcinogens, Carcinogenesis 5:1367 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Yokoyama, M. A. Sells, T. V. Reddy and B. Lombardi, Hepatocarcinogenic and promoting action of a choline-devoid diet in the rat, Cancer Res. 45:2834 (1985).PubMedGoogle Scholar
  11. 11.
    R. C. Gupta, J. Locker and B. Lombardi, 32P-Postlabeling analysis of liver DNA-adducts in rats chronically fed a choline-devoid diet, Carcinogenesis 8:187 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Shinozuka and S. L. Katyal, Pathology of choline deficiency, in: “Nutritional Pathology”, H. Sidransky, ed., Marcel Dekker, New York (1985).Google Scholar
  13. 13.
    H. Shinozuka, S. L. Katyal and M. I. R. Perera, Choline deficiency and chemical carcinogenesis, in: “Essential Nutrients in Carcinogenesis”, L. A. Poirier, P. M. Newberne and M. W. Pariza, eds., Plenum Press, New York (1986).Google Scholar
  14. 14.
    C. C. Lucas and J. J. Ridout, Fatty livers and lipotropic phenomena, Progr. Chem. Fats Other Lipids 10:1 (1967).CrossRefGoogle Scholar
  15. 15.
    A. Srecker, Beobachtungen uber die Galle ver shiedener Thiere, Ann. Chim. 70:149 (1849).Google Scholar
  16. 16.
    C. H. Best and M. E. Huntsman, The effects of the components of lecithins upon deposition of fat in the liver, J. Physiol. 75:405 (1932).PubMedGoogle Scholar
  17. 17.
    C. H. Best and J. H. Ridout, Choline as a dietary factor, Ann. Rev. Biochem. 8:349 (1939).CrossRefGoogle Scholar
  18. 18.
    C. H. Best, M. E. Huntsman and J. H. Ridout, The “lipotropic” effect of proteins, Nature 135:821 (1935).CrossRefGoogle Scholar
  19. 19.
    S. H. Zeisel, Dietary choline: biochemistry, physiology, and pharmacology, Annu. Rev. Nutr. 1:95 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    J. A. Bremer and D. M. Greenberg, Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidyl choline), Bioch. Biophys. Acta 46:205 (1961).CrossRefGoogle Scholar
  21. 21.
    A. Contardi and A. Ercoli, Uber die enzymatische Spaltung der Lecithine und Lysolecithine, Biochem. Z. 261:275 (1933).Google Scholar
  22. 22.
    L. A. Poirier, The role of methionine in Carcinogenesis, in: “Essential Nutrients in Carcinogenesis”, L. A. Poirier, P. M. Newberne and M. W. Pariza, eds., Plenum Press, New York (1986).Google Scholar
  23. 23.
    R. J. Young, C. C. Lucas, J. M. Patterson and C. H. Best, Lipotropic dose-response studies in rats: comparison of choline, betain, and methionine, Canad. J. Biochem. Physiol. 34:713 (1956).PubMedCrossRefGoogle Scholar
  24. 24.
    Nutrient requirements of laboratory animals, Natl. Res. Council 10:7 (1978).Google Scholar
  25. 25.
    H. Shinozuka, S. L. Katyal and M. I. R. Perera, Fat, lipotropes, hypolipidemic agents and liver cancer, in: “Dietary Fat and Cancer”, C. Ip., D. F. Birt, A. E. Rogers and C. Mettline, eds., Alan R. Liss Inc., New York (1986).Google Scholar
  26. 26.
    W. H. Griffith and N. J. Wade, Choline metabolism. 1. The occurrence and prevention of hemorrhagic degeneration in young rats on a low choline diet, J. Biol. Chem. 131:567 (1939).Google Scholar
  27. 27.
    R. E. Olson, Scientific contributions of Wendel H. Griffith to our understanding of the function of choline, Fed. Proc. 30:131 (1971).PubMedGoogle Scholar
  28. 28.
    B. Lombardi, Effects of choline deficiency on rat hepatocytes, Fed. Proc. 30:139 (1971).PubMedGoogle Scholar
  29. 29.
    A. Kuksis and S. Mookerjea, Choline, Nutr. Rev. 36:201 (1978).PubMedCrossRefGoogle Scholar
  30. 30.
    E. P. Kennedy and S. B. Weiss, The function of cytidine coenzymes in the biosynthesis of phospholipids, J. Biol. Chem. 222:193 (1956).PubMedGoogle Scholar
  31. 31.
    C. Bruni and D. M. Hegsted, Effects of choline-deficient diets on the rat hepatocyte. Electron microscopic observations, Am. J. Path. 61:413 (1970).PubMedGoogle Scholar
  32. 32.
    B. Lombardi and A. Oler, Choline deficiency fatty liver. Protein synthesis and release, Lab. Invest. 17:308 (1967).PubMedGoogle Scholar
  33. 33.
    A. Oler and B. Lombardi, Further studies on a defect in the intracellular transport and secretion of proteins by the liver of cholinedeficient rats, J. Biol. Chem. 245:1282 (1970).PubMedGoogle Scholar
  34. 34.
    W. E. M. Lands, Lipid metabolism, Ann. Rev. Biochem. 34:313 (1965).PubMedCrossRefGoogle Scholar
  35. 35.
    R. L. Lyman, S. M. Hopkins, G. Sheehan and J. Tinoco, Effects of estradiol and testosterone on the incorporation and distribution of [Me-C] methionine methyl in rat liver lecithins, Bioch. Biophys. Acta 152:197 (1968).CrossRefGoogle Scholar
  36. 36.
    B. Lombardi, P. Pani, F. F. Schlunk and S-H. Chen, Labeling of liver and plasma lecithins after injection of 1-2-14 C-2-Dimethyl-aminoethanol and 14C-L-Methionine-Methyl to choline deficient rats, Lipids 4:67 (1969).PubMedCrossRefGoogle Scholar
  37. 37.
    B. Lombardi, Considerations on the pathogenesis of fatty liver, Lab. Inv. 15:1 (1966).Google Scholar
  38. 38.
    K. J. Isselbacher and D. H. Alpers, Fatty liver, biochemical and clinical aspects, in: “Disease of Liver”, L. Schiff, ed., Lippincott, Philadelphia (1969).Google Scholar
  39. 39.
    R. O. Recknagel and E. A. Glende, Carbon tetrachloride hepatoxicity: An example of lethal cleavage, CRC Crit. Rev. Toxicol. 2:263 (1973).CrossRefGoogle Scholar
  40. 40.
    W. S. Hartroft, Histological studies on fatty infiltration of the liver in choline-deficient rats, in: “Liver Disease”, S. Scherlock and G. E. W. Wolstenholme, eds., J. & A. Churchill, London (1951).Google Scholar
  41. 41.
    N. Chandar, J. Amenta, J. C. Kandala and B. Lombardi, Liver cell turnover in rats fed a choline-devoid diet, Carcinogenesis, 8:669 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    N. Chandar and B. Lombardi, Liver cell proliferation, and incidence of hepatocellular carcinomas, in rats fed consecutively a cholinedevoid and choline-supplemented diet, submitted for publication.Google Scholar
  43. 43.
    J. L. Farber, Reactions of the liver to injury: Necrosis, in: “Toxic Injury of the Liver, PartA”, E. Farber and M. M. Fisher, eds., Marcel Dekker, New York (1979).Google Scholar
  44. 44.
    B. F. Trump, E. M. McDowell and Arstila, A. V., in: “Principles of Pathobiology”, R. B. Hill and M. F. LaVia, eds., Oxford University Press (1980).Google Scholar
  45. 45.
    W. S. Hartroft, The sequence of pathological events in the development of experimental fatty livers and cirrhosis, Ann. N. Y. Acad. Sci. 57:633 (1954).PubMedCrossRefGoogle Scholar
  46. 46.
    R. A. MacDonald, “Lifespan” of liver cells. Autoradiographic study using tritiated thymidine in normal, cirrhotic, and partially hepatectomized rats, Arch. Intern. Med. 107:79 (1961).Google Scholar
  47. 47.
    L. K. Giambarresi, S. L. Katyal and B. Lombardi, Promotion of liver carcinogenesis in the rat by a choline-devoid diet: role of liver cell necrosis and regeneration, Br. J. Cancer 46:825 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    A. K. Ghoshal, M. Ahluwalia and E. Farber, The rapid induction of liver cell death in rats fed a choline-deficient methionine-low diet, Am J. Pathol. 113:309 (1983).PubMedGoogle Scholar
  49. 49.
    K. N. Rao, Regulatory aspects of cholesterol metabolism in cells with different degrees of replication, Toxicol. Path. 14:430 (1986).CrossRefGoogle Scholar
  50. 50.
    A. E. Rogers and R. A. MacDonald, Hepatic vasculature and cell proliferation in experimental cirrhosis, Lab. Invest. 14:1710 (1965).PubMedGoogle Scholar
  51. 51.
    H. P. Glauert, D. Beer, M. S. Rao, M. Schwartz, Y-D. Xu, T. L. Goldsworthy, J. Coloma and H. Pitot, Induction of altered hepatic foci in rats by the administration of hypolipidemic peroxisome proliferators above or following a single dose of diethylnitrosamine, Cancer Res. 46:4601 (1986).PubMedGoogle Scholar
  52. 52.
    A. K. Ghoshal and M. Farber, Induction of liver cancer by a diet deficient in choline and methionine (CMD), Proc. Am. Assoc. Cancer Res. 24:98 (1983).Google Scholar
  53. 53.
    J. W. Grisham and E. A. Porta, Origin and fate of proliferated hepatic ductal cells in the rat: Electron microscopic and autoradiographic studies, Exp. Mol. Path. 3:242 (1964).CrossRefGoogle Scholar
  54. 54.
    H. Shinozuka, B. Lombardi, S. Sell and R. M. Laminarino, Early histological and functional alterations of ethionine liver carcinogenesis in rats fed a choline-deficient diet, Cancer Res. 38:1092 (1978).PubMedGoogle Scholar
  55. 55.
    Y. Inaoka, Significance of the so-called oval cell proliferation during azo-dye hepatocarcinogenesis, Gann 58:355 (1967).PubMedGoogle Scholar
  56. 56.
    J. M. Grisham, Cell types in long-term propagable cultures of rat liver, Ann. N. Y. Acad. Sci. 349:128 (1980).PubMedCrossRefGoogle Scholar
  57. 57.
    H. Yoshimura, R. Harris, S. Yokoyama, S. Takahashi, M. A. Sells, S. F. Pan and B. Lombardi, Anaplastic carcinomas in nude mice and in original donor strain rats inoculated with cultured oval cells Am. J. Path. 110:322 (1983).PubMedGoogle Scholar
  58. 58.
    N. T. Hayner, L. Braun, P. Yaswen, M. Brooks and N. Fausto, Isozyme profiles of oval cells, parenchymal cells, and biliary cells isolated by centrifugal elutriation from normal and preneoplastic livers, Cancer Res. 44:332 (1984).PubMedGoogle Scholar
  59. 59.
    M-S. Tsao, J. D. Smith, K. G. Nelson and J. W. Grisham, A diploid epithelial cell line from normal adult rat liver with phenotypic properties of oval cells, Exp. Cell Res. 154:38 (1984).PubMedCrossRefGoogle Scholar
  60. 60.
    L. Braun, M. Goyette, P. Yaswen, N. L. Thompson and N. Fausto, Growth in culture and tumorigenicity after transfection with ras oncogene of liver epithelial cells from carcinogen-treated rats, Cancer Res. 47:4116 (1987).PubMedGoogle Scholar
  61. 61.
    M-S. Tsao and J. W. Grisham, Hepatocarcinomas, cholangiocarcinomas, and hepatoblastomas produced by chemically transformed cultured rat liver epithelial cells. A light and electron-microscopic analysis, Am. J. Path. 127:168 (1987).PubMedGoogle Scholar
  62. 62.
    J. W. Grisham, S. B. Thal and A. Nagel, Cellular derivation of continuously cultured epithelial cells from normal rat liver, in: “Gem Expression and Carcinogenesis in Cultured Liver Cells”, L. E. Gershcenson and E. Brad Thompson, eds., Academic Press, New York (1975).Google Scholar
  63. 63.
    B. Lombardi, On the nature, properties, and significance of oval cells, in: “Recent Trends in Chemical Carcinogenesis”, P. Pani, F. Feo and A. Columbano, eds., ESA, Cagliari (1982).Google Scholar
  64. 64.
    J. C. Linnell, M. J. Wilson, Y. B. Mikol and L. A. Poirier, Tissue distribution of methylcobalamin in rats fed amino acid-defined methyl-deficient diets, J. Nutrit. 113:124 (1983).PubMedGoogle Scholar
  65. 65.
    K. L. Hoover, P. H. Lynch and L. A. Poirier, Profound post-initiation enhancement by short-term severe methionine, choline, vitamin B12, and folate deficiency of hepatocarcinogenesis in F344 rats given a single low-dose diethylnitrosamine injection, JNCI 73:1327 (1984).PubMedGoogle Scholar
  66. 66.
    D. G. Goodman, J. M. Ward, R. A. Squire, K. C. Chu and M. S. Linhart, Neoplastic and nonneoplastic lesions in aging F344 rats, Toxicol. Appl. Pharmacol. 48:237 (1979).PubMedCrossRefGoogle Scholar
  67. 67.
    M. Pollard and P. H. Luckert, Spontaneous liver tumors in aged germ free Wistar rats, Lab. Anim. Sci. 29:74 (1979).PubMedGoogle Scholar
  68. 68.
    D. G. Goodman, J. M. Ward and R. A. Squire, Neoplastic and nonneoplastic lesions in aging Osborne Mendel rats, Toxicol. Appl. Pharmacol. 55:433 (1980).PubMedCrossRefGoogle Scholar
  69. 69.
    J. M. Ward, Morphology of foci of altered hepatocytes and naturally occurring hepatocellular tumors in F344 rats, Virchows Arch. Pathol. Anat. 390:339 (1981).PubMedGoogle Scholar
  70. 70.
    K. Ogawa, T. Onoe and M. Tachenchi, Spontaneous occurrence of gammaglutamyltranspeptidase positive hepatocytic foci in 105-week old Wistar and 72-week-old Fischer 344 male rats, JNCI 67:407 (1981).PubMedGoogle Scholar
  71. 71.
    G. M. William, Liver carcinogenesis: the role for some chemicals of an epigenetic mechanism of liver-tumor promotion involving modification of the cell membrane, Food Cosmet. Toxicol. 19:577 (1981).CrossRefGoogle Scholar
  72. 72.
    R. Schulte-Hermann, G. Ohde, J. Schuppler and I. Timmermann-Trosiener, Enhanced proliferation of putative preneoplastic cells in rat liver following treatment with the tumor promoters phenobarbital, hexachlorocyclohexane, steroid compounds, and nafenopin, Cancer Res. 41:2556 (1981).PubMedGoogle Scholar
  73. 73.
    P. M. Newberne, Assessment of the hepatocarcinogenic potential of chemicals: Response of the liver, in.: “Toxicology of the Liver”, G. L. Plaa and W. R. Hewitt, eds., Raven Press, New York (1982).Google Scholar
  74. 74.
    R. Schulte-Hermann, I. Timmerman-Trosiener and J. Schuppler, Promotion of spontaneous preneoplastic cells in rat liver as a possible explanation of tumor production by non-mutagenic compounds, Cancer Res. 43:2644 (1983).Google Scholar
  75. 75.
    J. M. Ward, Increased susceptibility of livers of aged F344/NCr rats to the effects of phenobarbital on the incidence, morphology and histochemistry of hepatocellular foci and neoplasms, J. Natl. Cancer Inst. 71:815 (1983).PubMedGoogle Scholar
  76. 76.
    H. A. Solleveld, J. K. Haseman and E. E. McConnell, Natural history of weight gain, survival and neoplasia in the F344 rat, J. Natl. Cancer Inst. 72:929 (1984).PubMedGoogle Scholar
  77. 77.
    T. Goldswothy, H. A. Campbell and H. C. Pitot, The natural history and dose-response characteristics of enzyme-altered foci in rat liver following phenobarbital and diethylnitrosamine administration, Carcinogenesis 5:67 (1984).CrossRefGoogle Scholar
  78. 78.
    J. A. Popp, B. H. Scartichini and L. K. Garvey, Quantitative evaluation of hepatic foci of cellular alteration occurring spontaneously in Fisher-344 rats, Fund. Appl. Toxicol. 5:314 (1985).CrossRefGoogle Scholar
  79. 79.
    G. Bode, F. Hartig, G. Hebold and H. Czerwek, Incidence of spontaneous tumors in laboratory rats, Exp. Path. 28:235 (1985).CrossRefGoogle Scholar
  80. 80.
    T. Tanaka, H. Mori and G. M. Williams, Enhancement of dimethylnitrosamine-initiated hepatocarcinogenesis in hamsters by subsequent administration of carbon tetrachloride but not phenobarbital or p, p’-dichlorodiphenyltrichloroethane, Carcinogenesis 8:1171 (1987).PubMedCrossRefGoogle Scholar
  81. 81.
    M. A. Moore, K. Nakagawa, K. Satoh, T. Ishikawa and K. Sato, Single GST-P positive cells-putative initiated hepatocytes, Carcinogenesis 8:483 (1987).PubMedCrossRefGoogle Scholar
  82. 82.
    R. J. Monnat, Jr. and L. A. Loeb, Mechanisms of neoplastic transformation, Cancer Invest. 1:175 (1983).PubMedCrossRefGoogle Scholar
  83. 83.
    W. Den Otter, J. W. Koten and D. J. Kerkinderen, Carcinogenesis Revisited, Cancer Invest. 5:69 (1987).CrossRefGoogle Scholar
  84. 84.
    G. M. Ledda, M. A. Sells, S. Yokoyama and B. Lombardi, Metabolic properties of isolated rat liver cell preparations enriched in epithelial cells other than hepatocytes, Int. J. Cancer 31:231 (1983).PubMedCrossRefGoogle Scholar
  85. 85.
    D. S. Longnecker, J. French, E. Hyde, H. S. Lilja and J. Yager, Jr., Effect of age on nodule induction by azaserine and DNA synthesis in rat pancreas, J. Natl. Cancer Inst. 58:1769 (1977).PubMedGoogle Scholar
  86. 86.
    D. A. Banas, Evaluations of pancreas lesions in corn oil vehicle control rats: Comparison of quantity of pancreatic tissue examined to the number of proliferative lesions. Report submitted by Experimental Pathology Laboratories, Inc., to the National Toxicology Program, May 19, 1983.Google Scholar
  87. 87.
    G. A. Boorman and S. L. Eustis, Proliferative lesions of the exocrine pancreas in male F344/n rats, Environ. Health Perspect. 56:213 (1984).PubMedCrossRefGoogle Scholar
  88. 88.
    S. L. Eustis and G. A. Boorman, Proliferative lesions of the exocrine pancreas: relationship to corn oil gavage in the National Toxicology Program, J. Natl. Cancer Inst. 75:1067 (1985).PubMedGoogle Scholar
  89. 89.
    D. S. Longnecker, N. Chandar, B. D. Roebuck, D. G. Sheahan and B. Lombardi, Preneoplastic and neoplastic lesions in the pancreas of rats fed choline-devoid or choline-supplemented diets, with or without phenobarbital, in preparation.Google Scholar
  90. 90.
    P. M. Newberne, J. L. V. deCarmago and A. J. Clark, Choline deficiency, partial hepatectomy, and liver tumors in rats and mice, Toxicol. Pathol. 2:95 (1982).CrossRefGoogle Scholar
  91. 91.
    M. B. Sporn and G. J. Todaro, Autocrine secretion and malignant transformation of cells, New Engl. J. Med. 303:878 (1980).PubMedCrossRefGoogle Scholar
  92. 92.
    H. S. Earp and E. J. O’Keefe, Epidermal growth factor receptor number decreases during rat liver regeneration, J. Clin. Invest. 67:1580 (1981).PubMedCrossRefGoogle Scholar
  93. 93.
    A. Francavilla, P. Ove, L. Polimeno, C. Sciascia, M. L. Coetzee and T. E. Starzl, Epidermal growth factor and proliferation of rat hepatocytes in primary culture isolated at different times after partial hepatectomy, Cancer Res. 46:1318 (1986).PubMedGoogle Scholar
  94. 94.
    D. R. LaBreque and N. R. Bachur, Hepatic stimulator substance: Physiochemical characteristics and specificity, Am. J. Physiol. 242:G281 (1982).Google Scholar
  95. 95.
    T. P. Iype and J. B. McMahon, Hepatic proliferation inhibitor, Mol. Cell. Biochem. 59:57 (1984).PubMedGoogle Scholar
  96. 96.
    B. Lombardi, P. Ove and T. V. Reddy, Endogenous hepatic growth-modulating factors and effects of a choline-devoid diet and of phenobarbital on hepatocarcinogenesis in the rat, Nutr. Cancer 7:145 (1985).PubMedCrossRefGoogle Scholar
  97. 97.
    J. M. Betschart, M. A. Virji, M. I. R. Perera and H. Shinozuka, Alterations in hepatocyte insulin receptors in rats fed a cholinedeficient diet, Cancer Res. 46:4425 (1986).PubMedGoogle Scholar
  98. 98.
    C. Gupta, A. Hattori, J. M. Betschart, M. A. Virji and H. Shinozuka, Inhibition of EGF binding in rat hepatocytes by liver tumor promoters, Cancer Res. 28:173 (1987).Google Scholar
  99. 99.
    V. R. Potter, Initiation and promotion in cancer formation: the importance of studies on intercellular communication, Yale J. Biol. Med. 53:367 (1980).PubMedGoogle Scholar
  100. 100.
    E. Scherer, Neoplastic progression in experimental hepatocarcinogenesis, Bioch. Biophys. Acta 738:219 (1984).Google Scholar
  101. 101.
    P. C. Nowell, The clonal evolution of tumor cell populations, Science 194:23 (1976).PubMedCrossRefGoogle Scholar
  102. 102.
    A. W. Pound and L. J. McGuire, Repeated partial hepatectomy as a promoting stimulus for carcinogenic response of liver to nitrosamine in rats, Br. J. Cancer 37:585 (1978).PubMedCrossRefGoogle Scholar
  103. 103.
    P. M. Newberne and H. E. Rogers, Labile methyl groups and the promotion of cancer, Ann. Rev. Nutrit. 6:407 (1986).CrossRefGoogle Scholar
  104. 104.
    T. V. Reddy, N. Chandar and B. Lombardi, in preparation.Google Scholar
  105. 105.
    N. Chander and B. Lombardi, in preparation.Google Scholar
  106. 106.
    T. H. Rushmore, E. Farber, A. K. Ghoshal, S. Parodi, M. Pala and M. Taningher, A choline-devoid diet, carcinogenic in the rat, induces DNA damage and repair, Carcinogenesis 7:1677 (1986).PubMedCrossRefGoogle Scholar
  107. 107.
    G. Ugazio, L. Gabriel and E. Burdinor, Osservazioni sperimentali sui lipidi accumulati nel fegato di ratto alimentato con dieta colino priva, Sperimentale 117:1 (1967).PubMedGoogle Scholar
  108. 108.
    T. H. Rushmore, Y. P. Linn, E. Farber and A. K. Ghoshal, Rapid lipid peroxidation in the nuclear fraction of rat liver induced by diet deficient in choline and methionine, Cancer Lett. 24:251 (1984).PubMedCrossRefGoogle Scholar
  109. 109.
    A. Ghoshal, T. H. Rushmore, Y. P. Linn and E. Farber, Early detection of lipid peroxidation in the hepatic nuclei of rats fed a diet deficient in choline and methionine (CMD), Proc. Am. Cancer Res. 25:94 (1984).Google Scholar
  110. 110.
    M. Comporti, Lipid peroxidation and cellular damage in toxic liver injury, Lab Invest. 53:599 (1985).PubMedGoogle Scholar
  111. 111.
    S. Banni, F. Corongiu and B. Lombardi, in preparation.Google Scholar
  112. 112.
    F. P. Corongiu, G. Poli, M. U. Dianzani, K. V. Cheeseman and T. F. Slater, Lipid peroxidation and molecular damage to polyunsaturated fatty acids in rat liver. Recognition of two classes of hydroperoxides found under conditions in vivo, Chem. Biol. Interactions 59:147 (1986).CrossRefGoogle Scholar
  113. 113.
    R. J. Havel, Metabolism of lipids in chylomicrons and very low density lipoproteins, in: “Adipose Tissue”, A. E. Renold and G. F. Cahill, Jr., eds., American Physiological Society, Washington (1965).Google Scholar
  114. 114.
    M. I. R. Perera, A. J. Demetris, S. L. Katyal and H. Shinozuka, Lipid peroxidation of liver microsome membranes induced by choline-deficient diets and its relationship to the diet-induced promotion of the induction of gamma-glutamyltranspeptidase-positive foci, Cancer Res. 45:2533 (1985).PubMedGoogle Scholar
  115. 115.
    M. A. Bansk and H. Shinozuka, Methapyrilene induces lipid peroxidation in the nuclear fraction of rat liver, Cancer Res. 28:90 (1987).Google Scholar
  116. 116.
    A. J. Monserrat, A. K. Ghoshal, W. S. Hartroft and E. A. Porta, Lipoperoxidation in the pathogenesis of renal necrosis in cholinedeficient rats, Am J. Path. 55:163 (1969).PubMedGoogle Scholar
  117. 117.
    A. Sevanian and P. Hochstein, Mechanisms and consequences of lipid peroxidation in biological systems, Ann. Rev. Nutrit. 5:365 (1985).CrossRefGoogle Scholar
  118. 118.
    H. Sidransky and E. Verney, Influence of ethionine on choline-deficiency fatty liver, J. Nutrit. 97:419 (1969).PubMedGoogle Scholar
  119. 119.
    E. Usdiu, R. T. Borchardt and C. R. Creveling, eds., “Transmethylation”, Elsevier, New York, (1979).Google Scholar
  120. 120.
    J. Locker, T. V. Reddy and B. Lombardi, DNA methylation and hepatocarcinogenesis in rats fed a choline-devoid diet, Carcinogenesis 7:1309 (1986).PubMedCrossRefGoogle Scholar
  121. 121.
    J. Locker, S. Hunt and B. Lombardi, Alpha-fetoprotein gene methylation and hepatocarcinogenesis in rats fed a choline-devoid diet, Carcinogenesis 8:241 (1986).CrossRefGoogle Scholar
  122. 122.
    R. Holliday, A new theory of carcinogenesis, Br. J. Cancer 40:513 (1979).PubMedCrossRefGoogle Scholar
  123. 123.
    R. M. Hoffman, Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis, Biochim. Biophys. Acta 738:49 (1983).Google Scholar
  124. 124.
    R. Holliday, The inheritance of epigenetic defects, Science 238:163 (1987).PubMedCrossRefGoogle Scholar
  125. 125.
    N. Chandar, B. Lombardi, W. Schultz and J. Locker, Analysis of ras genes and linked viral sequences in rat hepatocarcinogenesis, Am. J. Path, in press.Google Scholar
  126. 126.
    R. Muller and I. Verma, Expression of cellular oncogenes, Curr. Topics Microbiol. Immunol. 112:73 (1984).CrossRefGoogle Scholar
  127. 127.
    T. Tanaka, D. J. Slamon, H. Battifora and M. J. Cline, Expression of 21 ras oncoproteins in human cancers, Cancer Res. 46:1465 (1986).PubMedGoogle Scholar
  128. 128.
    N. Fausto and P. R. Shank, Oncogene expression in liver regeneration and hepatocarcinogenesis, Hepatology (Baltimore) 3:1016 (1983).PubMedCrossRefGoogle Scholar
  129. 129.
    J. M. Bishop, Cellular oncogenes and retroviruses, Annu. Rev. Biochem. 53:301 (1983).CrossRefGoogle Scholar
  130. 130.
    J. L. Marx, Oncogene action probed, Science 237:602 (1987).PubMedCrossRefGoogle Scholar
  131. 131.
    P. K. Vogt, The Seventeenth International Symposium of the Princess Takamatsu Cancer Research Fund: Oncogenes and Cancer, GANN 78:529 (1987).Google Scholar
  132. 132.
    B. I. Weinstein, Growth factors, oncogenes and multistage carcinogenesis, J. Cell. Biochem. 33:213 (1987).PubMedCrossRefGoogle Scholar
  133. 133.
    V. Chiarugi, M. Ruggiero and F. Porciatti, Oncogenes and transmembrane cell signaling, Cancer Inv. 5:215 (1987).CrossRefGoogle Scholar
  134. 134.
    M. B. Sporn, A. B. Roberts, L. M. Wakefield and R. K. Assoian, Transforming growth factor-beta: biological function and chemical structure, Science 233:532 (1986).PubMedCrossRefGoogle Scholar
  135. 135.
    E. Farber, The multistep nature of cancer development, Cancer Res. 44:4217 (1984).PubMedGoogle Scholar
  136. 136.
    S. H. Yuspa, T. Ben, H. Hennings and U. Lichti, Divergent responses in epidermal basal cells exposed to the tumor promoter 12-0-tetradecanoylphorbal-13-acetate, Cancer Res. 42:2344 (1982).PubMedGoogle Scholar
  137. 137.
    S. Yokoyama and B. Lombardi, Stage dependent enhanced induction of hepatocellular carcinomas in rats administered a second dose of diethylnitrosamine, Cancer Lett. 25:171 (1985).CrossRefGoogle Scholar
  138. 138.
    S. N. Zaman, W. M. Melia, R. D. Johnson, B. L. Portman, P. J. Johnson and R. Williams, Risk factors in development of hepatocellular carcinoma in cirrhosis: prospective study of 613 patients, Lancet 1:1357 (9185).Google Scholar
  139. 139.
    K. Okuda, I. Fujimoto, A. Hanai and Y. Urano, Changing incidence of hepatocellular carcinoma in Japan, Cancer Res. 47:4967 (1987).PubMedGoogle Scholar
  140. 140.
    P. P. Anthony, K. G. Ishak, N. C. Nayak, H. E. Pulsen, P. J. Schever and L. H. Sobin, The morphology of cirrhosis: definition, nomenclature, and classification, Bull. WHO 55:521 (1977).PubMedGoogle Scholar
  141. 141.
    A. Baggenstoss, R. D. Soloway, W. H. J. Summerskill, L. R. Elveback and L. J. Schoenfield, Chronic active liver disease. The range of histologic lesions, their response to treatment and evolution, Hum. Pathol. 3:183 (1972).PubMedCrossRefGoogle Scholar
  142. 142.
    D. Ganem and H. E. Varmus, The molecular biology of the hepatitis B virus, Ann. Rev. Biochem. 56:651 (1987).PubMedCrossRefGoogle Scholar
  143. 143.
    D. E. Koshland, Jr., Immortality and risk assessment, Science 236:241 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Benito Lombardi
    • 1
  1. 1.Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations