Proteolysis Associated with Thymidine-Induced Selective Cell Death in L-Cell Cultures

  • Joseph S. Amenta
  • Jardir Mehta
  • Francesco M. Baccino


Previous studies in our laboratories have suggested that some established cell lines, both in vitro and in vivo, show an increased rate of proteolysis as they attain high density1–5. Unusual was the observation that this increased proteolysis appeared to be associated with a unique type of selective cell death (SCD), while the remaining viable cells continued to show a low rate of protein turnover. The exact relationship between this increased proteolysis and SCD, however, has remained elusive.


Cell Protein Protein Turnover Unbalanced Growth Vacuolar System Medium Radioactivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Amenta and M. J. Sargus, Mechanisms of protein degradation growing and non-growing L-cell cultures, Biochem. J. 182:847 (1979).PubMedGoogle Scholar
  2. 2.
    J. S. Amenta and S. C. Brocher, Evidence for heterogeneity of proteinturnover states in cultured cells, Biochem. J. 190:673 (1980).PubMedGoogle Scholar
  3. 3.
    J. S. Amenta, S. C. Brocher, J. Mehta, D. Manjunath and F. M. Baccino, Evidence for a special relationship between proteolysis and single cell necrosis, Toxicol. Pathol. 14:335 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    F. M. Baccino, L. Tessitore and G. Bonelli, Control of protein degradation and growth phase in normal and neoplastic cells, Toxicol. Pathol. 12:281 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    L. Tessitore, G. Bonelli, G. Cecchini, J. S. Amenta and F. M. Baccino, Regulation of protein turnover versus growth state: ascites hepatoma as a model for studies both in the animal and in vitro, Arch. Biochem. Biophys. 255:372 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    J. A. Silverman, J. Mehta, S. Brocher and J. S. Amenta, Analytical errors in measuring radioactivity in cell proteins and their effect on estimates of protein turnover in L cells, Biochem. J. 226:361 (1985).PubMedGoogle Scholar
  7. 7.
    J. S. Amenta and J. A. Silverman, Analytical errors in measuring radioactivity in cell protein and their effect of estimates of protein synthesis, in: “Intracellular Protein Catabolism”, I. E. Khairrallah, J. F. Bond and J. W. C. Bird, eds., Alan R. Liss, New York, (1985).Google Scholar
  8. 8.
    M. W. Lieberman, R. S. Verbin, M. Landay, H. Liang, E. Farber, T.-N. Lee and R. Starr, A probable role for protein synthesis in intestinal epithelial cell damage induced in vivo by cytosine arabinoside, nitrogen mustard, or X-radiation, Cancer Res. 30:942 (1970).PubMedGoogle Scholar
  9. 9.
    A. H. Wyllie, Cell death: a new classification separating apoptosis from necrosis, in: “Cell Death in Biology and Pathology”, I. D. Bowen and R. A. Lochsin, eds., Chapman and Hall, London, (1981).Google Scholar
  10. 10.
    J. S. Amenta, M. J. Sargus and F. M. Baccino, Inhibition of basal protein degradation in rat embryo fibroblasts by cycloheximide: Correlation with activities of lysosomal proteases, J. Cell. Pathol. 97:267 (1978).Google Scholar
  11. 11.
    D. W. Ross, The nature of unbalanced cell growth caused by cytotoxic agents, Virchows Arch. Cell Path. 37:225 (1981).CrossRefGoogle Scholar
  12. 12.
    S. E. Pfeiffer and L. J. Tolmach, Inhibition of DNA synthesis in HeLa cells by hydroxyurea, Cancer Res. 27:124 (1967).PubMedGoogle Scholar
  13. 13.
    R. E. Bennet, M. W. Harrison, C. J. Bishop, J. Searle and J. F. R. Kerr, The role of apoptosis in atrophy of the small gut mucosa produced by repeated administration of cytosine arabinoside, J. Pathol. 142:259 (1984).CrossRefGoogle Scholar
  14. 14.
    J. Malec, W. M. Przybyszewski, M. Grabarczyk, E. Sitarska and B. Czartoryska, Mechanism of unbalanced growth-induced cell damage. I. A probable role for hydrolytic enzymes in synthesis, Chem.-Biol. Inter. 57:315 (1986).CrossRefGoogle Scholar
  15. 15.
    J. Sawecka, B. Golos and J. Malec, Mechanism of unbalanced growth-induced cell damage. II. A probable relationship between unbalanced growth, DNA breakage and cell death, Chem.-Biol. Inter. 60:47 (1986).CrossRefGoogle Scholar
  16. 16.
    J. Sparkuhl and R. Sheinin, Protein synthesis and degradation during expression of the temperature-sensitive defect in ts A1S9 mouse L-cells, J. Cell. Physiol. 105:247 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    P. E. Schwarze and P.O. Seglen, Protein metabolism and survival of rat hepatocytes in early culture, Exp. Cell Res. 130:185 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    P. E. Schwarze and P.O. Seglen, Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats, Exp. Cell Res. 157:15 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    E. Farber and R. Baserga, Differential effects of hydroxyurea on survival of proliferating cells in vivo, Cancer Res. 29:136 (1969).PubMedGoogle Scholar
  20. 20.
    A. Columbano, G. M. Ledda-Columbano, P. M. Rao, S. Rajalakshmi and D. S. R. Sarma, Occurrence of cell death (apoptosis) in preneoplastic and neoplastic liver cells, Amer. J. Pathol. 116:441 (1984).Google Scholar
  21. 21.
    W. Bursch, H. S. Taper, B. Lauer and R. Schulte-Hermann, Quantitative histological and histochemical studies on the occurrence and stages of controlled cell death (apoptosis) during regression of rat liver hyperplasia, Virchows Arch. Cell Path. 50:153 (1985).CrossRefGoogle Scholar
  22. 22.
    J. Searle, T. A. Sawson, P. J. Abbott, B. Harmon and J. F. R. Kerr, Electron-microscope study of the mode of cell death induced by cancer-chemotherapeutic agents in populations of proliferating normal and neoplastic cells, J. Pathol. 116:129 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    A. H. Wyllie, J. F. R. Kerr and A. R. Currie, Cell death: the significance of apoptosis, Int. Rev. Cytol. 68:251 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    A. H. Wyllie, R. G. Morris, A. L. Smith and D. Dunlop, Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis, J. Pathol. 142:67 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    D. W. King, K. G. Bensch and R. B. Hill, State of dynamic equilibrium in protein of mammalian cells, Science 131:106 (1960).PubMedCrossRefGoogle Scholar
  26. 26.
    L. Warren and M. C. Glick, Membranes of animal cells. II. The metabolism and turnover of the surface membrane, J. Cell Biol. 37:729 (1968).PubMedCrossRefGoogle Scholar
  27. 27.
    H. C. Jordan and P. A. Schmidt, Constant protein turnover in mammalian cells during logarithmic growth, Biochem. Biophys. Res. Commun. 4:313 (1961).PubMedCrossRefGoogle Scholar
  28. 28.
    G. B. Gordon, Lipid accumulation in the stationary phase of strain L cells in suspension culture, Lab. Invest. 36:114 (1977).PubMedGoogle Scholar
  29. 29.
    J. S. Amenta, F. M. Baccino and M. J. Sargus, Cell protein degradation in cultured rat embryo fibroblasts. Suppression by vinblastine of the enhanced proteolysis by serum-deficient media, Biochim. Biophys. Acta 451:511 (1976).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Joseph S. Amenta
    • 1
  • Jardir Mehta
    • 1
  • Francesco M. Baccino
    • 2
  1. 1.Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Dipartimento di Medicina ed Oncologia Sperimentale, Sezione di Patologia GeneraleUniversità di TorinoTorinoItaly

Personalised recommendations