Advertisement

Regulation of S-Adenosyl-L-Methionine Decarboxylase in Normal and Regenerating Rat Liver by Adenosine-Containing Molecules

  • Giuseppe Scalabrino
  • Maria Elena Ferioli
  • Rossella Candiani

Abstract

The pathway for polyamine biosynthesis in its entirety thought to play a pivotal role in the regulation of the proliferation of eukaryotic cells, simultaneously provides the cells with two types of factors that regulate the growth and the differentiation of mammalian cells in opposite directions. These are the polyamines, which stimulate cell growth and differentiation, and the sulphur-containing purine nucleoside 5′-deoxy-5′methylthioadenosine (MTA), which strongly inhibits growth and differentiation of mammalian cells1–5. Therefore, the study of the key points in the polyamine biosynthetic pathway seems to be of paramount importance for better understanding the mechanisms regulating the proliferation of eukaryotic cells.

Keywords

Partial Hepatectomy Polyamine Biosynthesis Stimulate Cell Growth Dixon Plot Methionine Adenosyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. G. Williams-Ashman and Z. N. Canellakis, Polyamines in mammalian biology and medicine, Perspect. Biol. Med. 22:421 (1979).PubMedGoogle Scholar
  2. 2.
    G. Scalabrino and M.E. Ferioli, Polyamines in mammalian tumors, Part I, Adv. Cancer Res. 35:151 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    O. Heby, Role of polyamines in the control of cell proliferation and differentiation, Differentiation 19:1 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    A. E. Pegg and P. P. McCann, Polyamine metabolism and function, Am. J. Physiol. 243:C212 (1982).PubMedGoogle Scholar
  5. 5.
    H. G. Williams-Ashman, J. Seidenfeld and P. Galletti, Trends in biochemical pharmacology of 5′-deoxy-5′-methylthioadenosine, Biochem. Pharmacol. 31:277 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    H. G. Williams-Ashman and A. E. Pegg, Aminopropyl group transfers in polyamine biosynthesis, in: “Polyamines in Biology and Medicine”, D. R. Morris and L. J. Marton, eds., Marcel Dekker, New York, (1981).Google Scholar
  7. 7.
    A. E. Pegg, S-adenosylmethionine decarboxylase: a brief review, Cell Biochem. Funct. 2:11 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    C. W. Tabor and H. Tabor, Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase, Adv. Enzymol. 56:251 (1984).PubMedGoogle Scholar
  9. 9.
    G. Scalabrino and M. E. Ferioli, Polyamines in mammalian tumors. Part II., Adv. Cancer Res. 36:1 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Hölttä, H. Korpela and T. Hovi, Several inhibitors of ornithine and adenosylmethionine decarboxylase may also have antiproliferative effects unrelated to polyamine depletion, Biochim. Biophys. Acta 677:90 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    A. E. Pegg, Inhibition of S-adenosylmethionine decarboxylase, Meth. Enzymol. 94:239 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Scalabrino and M. E. Ferioli, New insights into the regulation of S-adenosyl-L-methionine decarboxylase by adenosine-containing molecules in rat liver, in: “Biomedical Studies of Natural Polyamines”, C. M. Caldarera, C. Clô and C. Guarnieri, eds., CLUEB, Bologna, (1986).Google Scholar
  13. 13.
    R. W. Wolford, M. R. Macdonald, B. Zehfus, T. J. Rogers and A. J. Ferro, Effect of 5′-methylthioadenosine and its analogs on murine lymphoid cell proliferation, Cancer Res. 41:3035 (1981).PubMedGoogle Scholar
  14. 14.
    M. W. White, M. K. Riscoe and A. J. Ferro, The comparative effects of 5′-methylthioadenosine and some of its analogs on cells containing, and deficient in, 5′-methylthioadenosine phosphorylase, Biochim. Biophys. Acta 762:405 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    A. E. Pegg, R. J. Borchardt and J. K. Coward, Effects of inhibitors of spermidine and spermine synthesis on polyamine concentrations and growth of transformed mouse fibroblasts, Biochem. J. 194:79 (1981).PubMedGoogle Scholar
  16. 16.
    H. Hibasami, M. Tanaka and J. Nagai, Inhibition of aminopropyltransferases by 5′-S-isobutyl-5′-deoxyadenosine in vitro, Biochem. Pharmacol. 31:1649 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Uberti, J. J. Lightbody and R. M. Johnson, The effect of nucleosides and deoxycoformycin on adenosine and deoxyadenosine inhibition of human lymphocyte activation, J. Immunol. 123:189 (1979).PubMedGoogle Scholar
  18. 18.
    D. A. Carson, D. B. Wasson, R. Taetle and A. Yu, Specific toxicity of 2-chlorodeoxyadenosine toward resting and proliferating human lymphocytes, Blood 62:737 (1983).PubMedGoogle Scholar
  19. 19.
    D. A. Carson, D. B. Wasson and E. Beutler, Antileukemic and immunosuppressive activity of 2-chloro-2′-deoxyadenosine, Proc. Natl. Acad. Sci. USA 81:2232 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    G. Scalabrino, M. E. Ferioli, R. Nebuloni and F. Fraschini, Effects of pinealectomy on the circadian rhythms of polyamine biosynthetic decarboxylases and tyrosine aminotransferase in different organs of the rat, Endocrinology 104:377 (1979).PubMedCrossRefGoogle Scholar
  21. 21.
    G. M. Higgins and R. M. Anderson, Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgycal removal, Arch. Path. 12:186 (1931).Google Scholar
  22. 22.
    C. E. Seyfried, O. E. Oleinik, Y. L. Degen, K. Resing and D.R. Morris, Purification, properties and regulation of the level of bovine S-adenosyl methionine decarboxylase during lymphocyte mitogenesis, Biochim. Biophys. Acta 716:169 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    J. A. Sturman and G. E. Gaull, Changes in subcellular distribution of S-adenosylmethionine decarboxylase in regenerating and in developing rat liver, Biochim. Biophys. Acta 428:70 (1976).PubMedCrossRefGoogle Scholar
  24. 24.
    H. Lineweaver and D. Burk, The determination of enzyme dissociation constants, J. Am. Chem. Soc. 56:658 (1934).CrossRefGoogle Scholar
  25. 25.
    M. Dixon, The determination of enzyme inhibitor constants, Biochem. J. 55:170 (1953).PubMedGoogle Scholar
  26. 26.
    A. Cornish-Bowden, A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors, Biochem. J. 137:143 (1974).PubMedGoogle Scholar
  27. 27.
    P. J. Geiger and S. P. Bessman, Protein determination by Lowry’s method in the presence of sulphydryl reagents, Anal. Biochem. 49:467 (1972).PubMedCrossRefGoogle Scholar
  28. 28.
    J. A. Todhunter, Reversible enzyme inhibition, Meth. Enzymol. 63:383 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    E. J. Williams, “Regression Analysis”, J. Wiley, New York (1959).Google Scholar
  30. 30.
    C. Daniel and F. S. Wood, “Fitting Equations to Data”, J. Wiley, New York (1971).Google Scholar
  31. 31.
    B. Yamanoha and K. Samejima, Inhibition of S-adenosylmethionine decarboxylase from rat liver by synthetic decarboxylated S-adenosylmethionine and its analogs, Chem. Pharm. Bull. 28:2232 (1980).PubMedCrossRefGoogle Scholar
  32. 32.
    R. Porta, C. Esposito and G. Delia Pietra, S-adenosylmethionine decarboxylase from human placenta, Int. J. Biochem. 8:347 (1977).PubMedCrossRefGoogle Scholar
  33. 33.
    H. Pösö, R. Sinervirta, J. J. Himberg and J. Jänne, Putrescine-insensitive S-adenosyl-L-methionine decarboxylase from Tetrahymena pyriformis, Acta Chem. Scand. B 29:932 (1975).CrossRefGoogle Scholar
  34. 34.
    H. Pösö and A. E. Pegg, Differences between tissues in response of S-adenosylmethionine decarboxylase to administration of polyamines, Biochem. J. 200:629 (1981).PubMedGoogle Scholar
  35. 35.
    H. Pösö and A. E. Pegg, Comparison of S-adenosylmethionine decarboxylase from rat liver and muscle, Biochemistry 21:3116 (1982).PubMedCrossRefGoogle Scholar
  36. 36.
    M. E. Ferioli and G. Scalabrino, Permanently decreased hepatic levels of 5′-deoxy-5′-methylthioadenosine during regeneration of and chemical carcinogenesis in rat liver, J. Natl. Cancer Inst. 76:1217 (1986).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Giuseppe Scalabrino
    • 1
  • Maria Elena Ferioli
    • 1
  • Rossella Candiani
    • 1
  1. 1.Institute of General Pathology and C.N.R. Centre for Research in Cell PathologyUniversity of MilanMilanoItaly

Personalised recommendations