Carcinogenicity of Methyl Halides: Current Problems Concerning Chloromethane

  • Hermann M. Bolt
  • Hans Peter
  • Rainer Jäger


Methyl halides (methyl chloride, bromide, iodide) comprise a group of compounds of “limited” or “insufficient” evidence of carcinogenicity; short-term tests with these materials, however, have revealed “sufficient evidence” of genetic activity1.


Glutathione Content Mouse Kidney Methyl Bromide Glutathione Depletion Methyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IARC, IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 41, International Agency for Research on Cancer, Lyon, France (1986).Google Scholar
  2. 2.
    H. Druckrey, H. Kruse, R. Preussmann, S. Ivankovic and C. Landschütz, Carcinogenic alkylating substances. III. Alkyl-halogenides,-sulphates, sulphonates and strained heterocyclic compounds, Z. Krebsforsch 74:241 (1970).PubMedCrossRefGoogle Scholar
  3. 3.
    L. H. J. C. Danse, F. L. van Velsen and C. A. van der Heijden, Methyl bromide: carcinogenic effects in the rat forestomach, Toxicol. Appl Pharmacol. 72:262 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    G. A. Boorman, H. L. Hong, C. W. Jameson, K. Yoshitomi and R. R. Maronpot, Regression of methyl bromide-induced forestomach lesions in the rat, Toxicol. Appl. Pharmacol. 86:131 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    G. Djalali-Behzad, S. Hussain, S. Osterman-Golkar and D. Segerbäck, Estimation of genetic risks of alkylating agents. VI. Exposure of mice and bacteria to methyl bromide, Mutat. Res. 84:1 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Fostel, P. F. Allen, E. Bermudez, A. D. Kligerman, J. L. Wilmer and T. R. Skopek, Assessment of the genotoxic effects of methyl chloride to human lymphoblasts, Mutat. Res. 155:75 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Peter, R. J. Laib, H. Ottenwälder, H. Topp, N. Rupprich and H. M. Bolt, DNA-binding assay of methyl chloride, Arch. Toxicol. 57:84 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    K. L. Pavkov, W. D. Kerns, C. E. Chrisp, D. C. Thake, R. L. Persing and H. H. Harroff, Major findings in a twenty-four month inhalation toxicity study of methyl chloride in mice and rats, Toxicologist 2:161 (abstract) (1982).Google Scholar
  9. 9.
    D. J. Kornbrust and J. S. Bus, Metabolism of methyl chloride to formate in rats, Toxicol. Appl. Pharmacol. 65:135 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    Deutsche Forschungsgemeinschaft, Methylchlorid/Chlormethan, in: “Toxikologisch-arbeitsmedizinische Begründungen von MAK-Werten”, D. Henschler, ed., Verlag Chemie, Weinheim (1984).Google Scholar
  11. 11.
    R. Jager, H. Peter, W. Sterzel and H. M. Bolt, Biochemical effects of methyl chloride in relation to its tumorigenicity, J. Cancer Res Clin Oncol. 114:64 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    W. K. Lutz, Endogenous formaldehyde does not produce detectable DNA-protein crosslinkes in rat liver, Toxicol. Pathol. 14:4 (1986).CrossRefGoogle Scholar
  13. 13.
    D. J. Kornbrust and J. S. Bus, Glutathione depletion by methyl chloride and association with lipid peroxidation in mice and rats, Toxicol. Appl. Pharmacol. 72:388 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    R. van Doom, P. J. A. Borm, Ch.-M. Leigdeckers, P. Th. Henderson, J. Reuvers and T. J. van Bergen, Detection and identification of S-methylcystein in urine of workers exposed to methyl chloride, Int. Arch. Occup. Environ. Hlth. 46:99 (1980).CrossRefGoogle Scholar
  15. 15.
    R. J. Nolan, D. L. Rick, T. D. Landry, L. P. McCarty, G. L. Agin and J. H. Saunders, Pharmacokinetics of inhaled methyl chloride in male volunteers, Fund. Apprl. Toxicol. 5:361 (1985).CrossRefGoogle Scholar
  16. 16.
    H. W. Casey, K. M. Ayers and F. R. Robinson, The urinary system, in: “Pathology of Laboratory Animals”, K. Benirschke, F. M. Garner, T. C. Jones, eds., Springer-Verlag, New York, Heidelberg, Berlin (1978).Google Scholar
  17. 17.
    K. T. Morgan, J. A. Swenberg, T. E. Hamm, R. Wolkowsky-Tyl and M. Phelps, Histopathology of acute toxic response in rats and mice exposed to methyl chloride by inhalation, Fund. Appl. Toxicol. 2:293 (1982).CrossRefGoogle Scholar
  18. 18.
    L. R. Pohl, B. Bhooshan, N. K. Whittaker and G. Krishna, Phosgene, a metabolite of chloroform, Biochem. Biophys. Res. Commun. 79:684 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    R. L. Hawke and R. M. Welch, Major differences in the specificity and regulation of mouse renal cytochrome P-450 dependent monooxygenases, Molec. Pharmacol. 27:283 (1985).Google Scholar
  20. 20.
    P. Eyer and D. Podhradsky, Evaluation of a micromethod for determination of glutathione using enzymatic cycling and Ellman’s Reagent, Anal. Biochem. 153:57 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    O. W. Griffith, Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine, Anal Biochem. 106:207 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    G. J. Chellman, R. D. White, R. M. Norton and J. S. Bus, Inhibition of the acute toxicity of methyl chloride in male B6C3F1 mice by glutathione depletion, Toxicol. Appl. Pharmacol. 86:93 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Sedlak and R. H. Lindsay, Estimation of total, protein-bound and nonprotein sulfhydryl groups in tissue with Ellman’s reagent, Anal. Biochem. 25:192 (1968).PubMedCrossRefGoogle Scholar
  24. 24.
    W. M. Kluwe, The nephropathy of low molecular weight halogenated alkane solvents, pesticides, and chemical intermediates, in: “Toxicology of the Kidney”, J. B. Hook, ed., Raven Press, New York (1981).Google Scholar
  25. 25.
    Z. Zaleska-Rutczynska and S. Krus, Effect of chloroform on the mouse kidney. II. Resistance of the F1 generation of a susceptible C3H/He strain and a resistant C57BL6/6JN strain, Pathol. Pol. 23:185 (1972).Google Scholar
  26. 26.
    G. J. Chellman, K. T. Morgan, J. S. Bus and P. K. Working, Inhibition of methyl chloride toxpxity in male F-344 rats by the anti-inflammatory agent BW755C, Toxicol. Appl. Pharmacol. 85:367 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Peter, D. Hopp, U. Huhndorf and H. M. Bolt, Untersuchungen zur Methylbromid-Vergiftung und ihrer Behandlung mit N-Acetyl-Cystein, Verh. Dtsch. Ges. Arbeitsmedizin (Gentner, Stuttgart) 25:535 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Hermann M. Bolt
    • 1
  • Hans Peter
    • 1
  • Rainer Jäger
    • 1
  1. 1.Institut für ArbeitsphysiologieUniversität DortmundDortmund 1Germany

Personalised recommendations