Advertisement

S-Adenosylmethionine Antipromotion and Antiprogression Effect in Hepatocarcinogenesis. Its Association with Inhibition of DNA Methylation and Gene Expression

  • Francesco Feo
  • Renato Garcea
  • Lucia Daino
  • Rosa Pascale
  • Serenella Frassetto
  • Patrizia Cozzolino
  • Maria G. Vannini
  • Maria E. Ruggiu
  • Marilena Simile
  • Marco Puddu

Abstract

The identification of several steps in the carcinogenic process, has permitted a new approach in the prevention of cancer development. It is conceivable that interference with one or more of the recognizable steps leads to the breakdown of the carcinogenic process. In recent years some attempts to interfere with carcinogenic promotion, at different levels, have been made using retinoids1,2, 1α, 25-dihydroxyvitamin D3, a hormonally active metabolite of vitamin D3, antioxidants4,5, α-difluoromethylornithine6,7, putrescine8, indomethacin9, protease inhibitors10, inhibitors of arachidonic acid metabolism11, protein kinase C inhibitors12, dehydroepiandrosterone and some related hormones13–16, and S-adenosylmethionine17–21 (SAM).

Keywords

Chemical Carcinogenesis Polyamine Synthesis Great Fall Control Cell Death Neoplastic Nodule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Verma, B. G. Shapas, M. H. Rice and R. K. Boutwell, Correlation of the inhibition by retinoids of the tumor promoter induced mouse epidermal ornithine decarboxylase activity and of skin tumor promotion, Cancer Res. 39:419 (1979).PubMedGoogle Scholar
  2. 2.
    S. M. Fisher, A. J. P. Klein-Szanto, L. A. Adams and T. J. Slaga, The first stage and complete promoting activity of retinoic acid but not the analog RO-10-9359, Carcinogenesis 6:575 (1985).CrossRefGoogle Scholar
  3. 3.
    K. Chida, H. Hashiba, M. Fukushima, T. Suda and T. Kuroki, Inhibition of tumor promotion in mouse skin by 1α, 25-dihydroxyvitamin B3, Cancer Res. 45:5426 (1985).PubMedGoogle Scholar
  4. 4.
    J. T. Chan and H. S. Black, The mitigating effect of dietary antioxidants on chemically-induced carcinogenesis, Experientia 34:110 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    T. J. Slaga, S. M. Fisher, C. E. Weeks, K. Nelson, M. Mamrack and A. J. P. Klein-Szanto, Specificity and mechanism(s) of promoter inhibitors in multistage promotion, in: “Carcinogenesis: A Comprehensive Survey”, T. J. Slaga, ed., Raven Press, New York (1980).Google Scholar
  6. 6.
    M. Takigawa, A. K. Verma, R. C. Simsiman, and R. K. Boutwell, Tumor promotion: Inhibition of 12-O-tetradecanoylphorbol-13-acetate mouse skin tumor formation by the irreversible inhibitor of ornithine decarboxylase α-difluoromethylornithine, Biochem. Biophys. Res. Commun. 105:969 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    C. E. Weeks, A. L. Hermann, F. R. Nelson and T. J. Slaga, a-Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits tumor promoter-induced polyamine accumulation and carcinogenesis in mouse skin, Proc. Natl. Acad. Sci. USA, 79:6028 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    R. G. Weeks, A. K. Verma and R. K. Boutwell, Inhibition by putrescine of the induction of epidermal ornithine decarboxylase activity and tumor promotion caused by 12-O-tetradecanoylphorbol-13-acetate, Career Res. 40:4013 (1980).Google Scholar
  9. 9.
    T. Narisawa, M. Satoh, M. Sano and T. Takahashi, Inhibition of initiation and promotion by N-methylnitrosourea-induced colon carcinogenesis in rats by non-steroid anti-inflammatory agent indomethacin, Carcinogenesis 44:1225 (1983).CrossRefGoogle Scholar
  10. 10.
    W. Troll, A. Klassen and A. Janoff, Tumorigenesis in mouse skin: Inhibition by synthetic inhibitors of proteases, Science 169:1211 (1979).CrossRefGoogle Scholar
  11. 11.
    S. N. Fischer, G. D. Mills and T. J. Slaga, Inhibition of mouse skin tumor promotion by several inhibitors of arachidonic acid metabolism, Carcinogenesis 3:1243 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Nakadate, S. Yamamoto, E. Aizu and R. Kato, Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and epidermal ornithine decarboxylase activity in mouse skin by palmitoylcarnitine, Cancer Res. 46:1589 (1986).PubMedGoogle Scholar
  13. 13.
    L. L. Pashko, R. J. Rovito, J. R. Williams, S. L. Sobel and A. G. Schwartz, Dehydroepiandrosterone (DHEA) and 3-ßmethylandrost-5-en-17-one: inhibitors of 7, 12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted skin papilloma formation in mice, Carcinogenesis 5:463 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    M. A. Moore, N. Thamavit, A. Tsuda, K. Sato, A. Ichihara and N. Ito, Modifying influence of dehydroepiandrosterone on the development of dehydroxy-di-n-propylnitrosamine-initiated lesions in the thyroid, lung and liver of F344 rats, Carcinogenesis 7:311 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Garcea, L. Baino, R. Pascale, S. Frassetto, P. Cozzolino, M. E. Ruggiu and F. Fee, Inhibition by dehydroepiandrosterone of liver preneoplastic foci formation in rats after initiation-selection of experimental earcinogenesis, Toxicol. Pathol. 15:164 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    F. Feo, R. Garcea, L. Dainc., S. Fressettc. P. Cozzolino, M.S. Ruggiu, G. Vannini, R. Pascale, L. Lenzerini, M. M. Simile and M. Puddu, Reversal by ribo-and deoxyribo-nucleosides of dehydroepiandroster-one-induced inhibition of enzyme altered foci in the liver of rats subjected to the initiation-selection process of experimental carcinogenesis, Carcinogenesis, in press.Google Scholar
  17. 17.
    F. Feo, Synthesis and accumulation of polyamines in N-nitrosodiethylamine-induced preneoplastic liver foci, Food Chem. Toxicol. 23:866 (1985).Google Scholar
  18. 18.
    F. Feo, R. Garcea, L. Daino, R. Pascale, L. Pirisi, S. Frassetto and M. E. Ruggiu, Early stimulation of polyamine biosynthesis during promotion by phenobarbital of diethylnitrosamine-induced rat liver carcinogenesis. The effect of variations of the S-adenosyl-L-methionine cellular pool, Carcinogenesis 6:1713 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    F. Feo, R. Garcea, R. Pascale, L. Pirisi, L. Daino and A. Donaera, The variations of S-adenosyl-L-methionine content modulate hepatocyte growth during phenobarbital promotion of diethylnitrosamine-induced rat liver carcinogenesis. Toxicol. Pathol. 15:109 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Garcea, R. Pascale, L. Daino, S. Frassetto, P. Cozzolino, M. E. Ruggiu, M. G. Vannini, L. Gaspa and F. Feo, Variations of ornithine decarboxylase activity and S-adenosyl-L-methionine and 5′-methylthioadenosine contents during the development of diethylnitrosamineinduced liver hyperplastic nodules and hepatocellular carcinoma, Carcinogenesis 8:653 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    F. Feo, R. Garcea, L. Daino and R. Pascale, Mechanism of the inhibition of liver hepatocarcinogenesis formation by S-adenosyl-L-methionine, in: “Experimental Hepatocarcinogenesis”, M. Roberfroid and V. Préat, eds., Plenum Press, New York (1988) in press.Google Scholar
  22. 22.
    J. A. Stekol, E. I. Anderson and S. Weiss, S-Adenosyl-L-methionine in the synthesis of choline, creatine and cystine in vivo and in vitro, J. Biol. Chem. 233:425 (1958).PubMedGoogle Scholar
  23. 23.
    V. Zappia, P. Galletti, M. Porcelli, G. Ruggiero and A. Andreana, Uptake of adenosylmethionine and related sulfur compounds by isolated rat liver, FEBS Lett. 90:331 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Pezzoli, G. Stramentinoli, M. Galli-Kienle and E. Pfaff, Uptake and metabolism of S-adenosyl-L-methionine by isolated rat hepatocytes, Biochem. Biophys. Res. Commun. 85:1031 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Z. Farooqui, H. W. Lee, S. Kim and W. K. Paik, Studies on compartmentation of S-adenosyl-L-methionine in Saccharomyces cerevisiae and isolated rat hepatocytes. Biochim. Bipophys. Acta 757:342 (1983).CrossRefGoogle Scholar
  26. 26.
    P. Giulidori, M. Galli-Kienle, E. Catto and G. Stramentinoli, Transmethylation, transsulfuration, and aminopropylation reactions of S-adenosylmethionine, J. Biol. Chem. 259:4205 (1984).PubMedGoogle Scholar
  27. 27.
    M. A. Engstrom and N. J. Benevenga, Rates of oxidation of the methionine and S-adenosylmethionine methylcarbons in isolated rat hepatocytes, J. Nutr. 117:1820 (1987).PubMedGoogle Scholar
  28. 28.
    M. Frezza, G. Pozzato, L. Chiesa, G. Stramentinoli and C. DiPadova, Reversal of intrahepatic cholestasis of pregnancy in women after high dose S-adenosyl-L-methionine administration, Hepatology 4:274 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    B. Lombardi and H. Shinozuka, Enhancement of 2-acetylaminofluorene liver carcinogenesis in rats fed a choline-devoid diet, Int. J. Cancer 23:565 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    A. E. Rogers, G. Lehnart and G. Morrison, Influence of dietary content of lipotropes and lipid on aflatoxin B1, N-2-fluorenylacetamide, 1,2-dimethylhidrazine carcinogenesis in rats, Cancer Res. 40:2802 (1980).PubMedGoogle Scholar
  31. 31.
    P. M. Newberne, J. L. V. deCarnago and A. J. Clark, Choline deficiency, partial hepatectomy, and liver tumors in rats and mice, Toxicol. Pathol. 2:95 (1982).CrossRefGoogle Scholar
  32. 32.
    Y. B. Mikol, K. L. Hoover, D. Creasia and L. A. Poirier, Hepatocarcinogenesis in rats fed methyl-deficient amino acid-defined diets, Carcinogenesis 4:1619 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    A. K. Ghoshal and E. Farber, The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens, Carcinogenesis 5:1367 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    S. Yokoyama, M. A. Sells, T. V. Reddy and B. Lombardi, Hepatocarcinogenic and promoting action of a choline-devoid diet in the rat, Cancer Res. 45:2834 (1985).PubMedGoogle Scholar
  35. 35.
    Y. B. Mikol and L. A. Poirier, An inverse relationship between hepatic ornithine decarboxylase and S-adenosylmethionine in rats, Cancer Lett. 13:195 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    N. Shivapurkar and L. A. Poirier, Tissue levels of S-adenosylmethionine and S-adenosylhomocysteine in rats fed methyl-deficient, aminoaciddefined diets for one to five weeks, Carcinogenesis 4:1051 (1983).PubMedCrossRefGoogle Scholar
  37. 37.
    N. Shivapurkar and L. A. Poirier, Decreased levels of S-adenosylmethionine in the livers of rats fed phenobarbital and DDT, Carcinogenesis 3:589 (1982).PubMedCrossRefGoogle Scholar
  38. 38.
    C. Peraino, R. J. M. Fry, E. Staffeldt and N. E. Kisielewsky, Effects of varying the exposure to phenobarbital on its enhancement of 2-acetylaminofluorene-induced hepatic tumorigenesis in the rat, Cancer Res. 33:1701 (1973).Google Scholar
  39. 39.
    T. Kitagawa and H. Sugano, Enhancing effect of phenobarbital on the development of enzyme-altered islands and hepatocellular carcinomas initiated by 3-methyl-4-(dimethylamino)azobenzene or diethylnitrosamine, Gann 69:678 (1978).Google Scholar
  40. 40.
    S. Yanagi, K. Sasaki and N. Yamamoto, Induction by phenobarbital of ornithine decarboxylase activity in rat liver after initiation with diethylnitrosamine, Cancer Lett. 12:87 (1981).PubMedCrossRefGoogle Scholar
  41. 41.
    D. B. Solt and E. Farber, New principle for the analysis of chemical carcinogenesis, Nature 263:702 (1976).CrossRefGoogle Scholar
  42. 42.
    H. G. Williams-Ashman, A. E. Pegg and D. H. Lockwood, Mechanisms and regulation of polyamine and putrescine biosynthesis in male genital glands and other tissues of mammals, Adv. Enzyme. Regul. 7:291 (1972).CrossRefGoogle Scholar
  43. 43.
    R. L. Pajula and A. Raina, Methylthioadenosine, a potent inhibitor of spermine synthase from bovine brain, FEBS Lett. 99:383 (1979).CrossRefGoogle Scholar
  44. 44.
    A. E. Pegg, R. T. Borchardt and J. K. Coward, Effects of inhibitors of spermidine and spermine synthesis on polyamine concentration and growth of transformed mouse fibroblasts, Biochem. J. 194:79 (1981).PubMedGoogle Scholar
  45. 45.
    G. Scalabrino, M. E. Ferioli and R. Candiani, New Insights into the regulation of S-adenosyl-L-methionine decarboxylase in normal and regenerating rat liver (this volume).Google Scholar
  46. 46.
    M. Tatematsu, Y. Nagamine and E. Farber, Redifferentiation as a basis for remodeling of carcinogen-induced hepatocyte nodules to normal appearing liver, Cancer Res. 43:5049 (1983).PubMedGoogle Scholar
  47. 47.
    M. A. Moore, H. J. Hacker and P. Bannasch, Phenotypic instability in focal and nodular lesions induced in a short term system in the rat liver, Carcinogenesis 5:595 (1983).CrossRefGoogle Scholar
  48. 48.
    N. Bursch, B. Laner, I. Timmermann-Trosiener, G. Bartel, J. Schuppler and R. Schulte-Hermann, Controlled death (apoptosis) of normal and putative preneoplastic cell in rat liver following withdrawal of tumor promoters, Carcinogenesis 5:453 (1984).PubMedCrossRefGoogle Scholar
  49. 49.
    C. Peraino, E. F. Staffeldt, B. A. Carnes, V. A. Ludeman, J. A. Blomquist and S. D. Vesselinovitch, Characterization of histochemically detectable altered hepatocyte foci and their relationship to hepatic tumorigenesis in rats treated once with diethylnitrosamine or benzo(a)-pyrene within one day after birth, Cancer Res. 44:3340 (1984).PubMedGoogle Scholar
  50. 50.
    R. Schulte-Hermann, W. Bursch, L. Fesus and B. Kraupp, Cell death by apoptosis in normal, preneoplastic and neoplastic tissue (this volume).Google Scholar
  51. 51.
    R. Schulte-Hermann, Tumor promotion in the liver, Arch. Toxicol. 57:147 (1985).PubMedCrossRefGoogle Scholar
  52. 52.
    E. Farber, Sequential events in chemical carcinogenesis, in: “Cancer: A Comprehensive Treatise”, Plenum Press, New York (1982).Google Scholar
  53. 53.
    E. Farber and R. Cameron, The sequential analysis of cancer development, Adv. Cancer Res. 31:125 (1980).PubMedCrossRefGoogle Scholar
  54. 54.
    Z. Brada, N. H. Altman, M. Hill and S. Bulba, The effect of methionine on the progression of hepatocellular carcinoma induced by ethionine, Res Commun. Chem. Pathol. Pharmacol. 38:157 (1982).PubMedGoogle Scholar
  55. 55.
    Z. Brada, J. Hillova, M. Hill, N. H. Altman and S. Bulba, Effect of methionine on development of benzopyrene (BP) induced sarcomas, Proc. AACR, Abstr. No. 478, Cancer Res. 27:121 (1986).Google Scholar
  56. 56.
    E. Wainfan and M. Dizik, Suppression by methionine and choline of oncofetal patterns of liver tRNA methyltrasferase activities in carcinogen-treated rats, Carcinogenesis 8:615 (1987).PubMedCrossRefGoogle Scholar
  57. 57.
    N. Shivapurkar, K. L. Hoover and L. A. Poirier, Effect of methionine and choline on liver tumor promotion by phenobarbital and DDT in diethyl nitrosamine-initiated rats, Carcinogenesis 5:547 (1986).CrossRefGoogle Scholar
  58. 58.
    J. D. Finkelstein and J. J. Martin, Methionine metabolism in mammals. Adaptation to methionine excess, J. Biol. Chem. 261:1582 (1986).PubMedGoogle Scholar
  59. 59.
    D. R. Hoffman, D. W. Marion, W. E. Cornatzer and J. A. Duerre, S-adenosylmethionine and S-adenosylhomocysteine metabolism in isolated rat liver, J. Biol. Chem. 255:10822 (1980).PubMedGoogle Scholar
  60. 60.
    J. Hillova, M. Hill, J. Belehradek Jr., R. Mariage-Sanson and Z. Brada, Loss of the oncogene from human H-ras-1 transfected NIH/3T3 cells grown in the presence of excess methionine, J. Natl. Cancer Inst. 77:721 (1986).PubMedGoogle Scholar
  61. 61.
    K. Oden and S. Clarke, S-adenosyl-L-methionine synthase from human erythrocytes: role in the regulation of cellular S-adenosylmethionine levels, Biochemistry 22:2978 (1983).PubMedCrossRefGoogle Scholar
  62. 62.
    C. Matsumoto, Y. Suma and K. Tsukada, Changes in the activities of S-adenosylmethionine synthetase isozymes from rat liver with dietary methionine, J. Biochem. 25:287 (1984).Google Scholar
  63. 63.
    V. Zappia, C. R. Zydek-Cwick and F. Schlenk, The simplicity of S-adenosylmethionine derivatives in methyl transfer reactions, J. Biol. Chem. 244:4499 (1969).PubMedGoogle Scholar
  64. 64.
    S. J. Kerr, Competing methyltransferase systems, J. Biol. Chem. 247:4248 (1972).PubMedGoogle Scholar
  65. 65.
    P. K. Chiang and G. L. Cantoni, Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo, Biochem. Pharmacol. 28:1897 (1979).PubMedCrossRefGoogle Scholar
  66. 66.
    M. J. Wilson, N. Shivapurkar and L. A. Poirier, Hypomethylation of hepatic nuclear DNA in rats fed with a carcinogenic methyl-deficient diet, Biochem. J. 218:987 (1984).PubMedGoogle Scholar
  67. 67.
    L. A. Poirier, M. J. Wilson and N. Shivapurkar, [Carcinogenesis and EDNA hypomethylation in methyl-deficient animals, in: “[tiBiological Methylations and Drug Design”, R. T. Borchardt, C. R. Creveling and P. M. Veland eds., Humana Press, Clifton (1986).Google Scholar
  68. 68.
    J. Locker, T. V. Reddy and B. Lombardi, DNA methylation and hepatocarcinogenesis in rats fed a choline-deficient diet, Carcinogenesis 7:1309 (1986).PubMedCrossRefGoogle Scholar
  69. 69.
    E. Wainfan, M. Dizik, M. Hluboky and M. E. Balis, Altered t-RNA methylation in rats and mice fed lipotrope-deficient diets, Carcinogenesis 7:473 (1986).PubMedCrossRefGoogle Scholar
  70. 70.
    D. R. Hoffman, J. A. Hanig and W. E. Cornatzer, Effects of a methyl-deficient diet on rat liver phosphatidylcholine biosynthesis, Can. J. Biochem. 59:543 (1981).PubMedGoogle Scholar
  71. 71.
    R. Pascale, L. Pirisi, L. Daino, S. Zanetti, E. Satta, E. Bartoli, and F. Feo, Role of phosphatidylethanolamine methylation in the synthesis of phosphatidylcholine by hepatocytes isolated from cholinedeficient rats, FEBS Lett. 145:293 (1982).PubMedCrossRefGoogle Scholar
  72. 72.
    P. A. Jones and S. M. Taylor, Cellular differentiation, cytidine analogs and DNA methylation, Cell 20:85 (1980).PubMedCrossRefGoogle Scholar
  73. 73.
    F. Ceusot, G. Acs and S. K. Christman, Inhibition of DNA methylation and induction of erythroleukemia cell differentiation by 5-azacytidine and 5-deoxycytidine, J. Biol. Chem. 257:2041 (1982).Google Scholar
  74. 74.
    A. Cihak, J. Vesely and J. Skoda, Azapyrimidine nucleosides: metabolism and inhibitory mechanisms, Adv. Enzyme Regul. 24:335 (1985).PubMedCrossRefGoogle Scholar
  75. 75.
    A. Cavaliere, A. Bufalari and R. Vitali, 5-Azacytidine carcinogenesis in Balb/c mice, Cancer Lett. 37:51 (1987).PubMedCrossRefGoogle Scholar
  76. 76.
    L. P. Adams and R. H. Burdon, “Molecular Biology of DNA Methylation”, Springer-Verlag, New York (1985).CrossRefGoogle Scholar
  77. 77.
    R. M. Hoffman, Altered methionine metabolism and transmethylation in Cancer, Antitumor Res. 5:1 (1985).Google Scholar
  78. 78.
    W. Doerfler, The effect of DNA methylation on DNA-protein interactions and on the regulation of gene expression, in: “Oncogenes and Growth Control” P. Kahn and T. Graf. eds., Springer-Verlag, Berlin (1986).Google Scholar
  79. 79.
    S. Sukumar, V. Notario, D. Martin-Zanca and D. Barbacid, Induction of mammary carcinomas in rats by nitrosomethylurea involves malignant activation of Ha-ras-1 locus by single point mutations, Nature, 306:658 (1983).PubMedCrossRefGoogle Scholar
  80. 80.
    G. M. Cooper and M.-A. Lane, Cellular transforming genes and oncogenesis, Biochim. Biophys. Acta 738:9 (1984).PubMedGoogle Scholar
  81. 81.
    T. Tachira, K. Hayashi, M. Ochiai, N. Tsuchida, M. Nagao and T. Sugimura, Structure of the c-Ki-ras gene in a rat fibrosarcoma induced by 1,8-dinitropyrene, Molec. Cell. Biol. 6:1349 (1986).Google Scholar
  82. 82.
    S. Sukumar, A. Perantoni, C. Reed, J. R. Rice and M. L. Wenk, Activated K-ras and N-ras oncogenes in primary renal mesenchymal tumors induced in F344 rats by methyl(methoxymethyl)nitrosamine, Molec. Cell. Biol. 6:2716 (1986).PubMedGoogle Scholar
  83. 83.
    H. D. Preisler, A. J. Kinniburgh, G. Wei-Dong and S. Khan, Expression of the protoncogenes c-myc, c-fos and c-fms in acute myelocytic leukemia at diagnosis and in remission, Cancer Res. 47:874 (1987)PubMedGoogle Scholar
  84. 84.
    R. Oscadir, R. Sanuda, M. Cruz, A. M. Graef and P. Cariglio, High correlation between molecular alterations of c-myc oncogene and carcinoma of uterine cervix, Cancer Res. 47:4173 (1987).Google Scholar
  85. 85.
    R. W. Wiseman, S. J. Stowers, E. C. Miller, M. W. Anderson and J. A. Miller, Activating mutations of the c-H-ras protoncogene in chemically induced hepatomas of the male B6C3F1 mouse, Proc. Natl. Acad. Sci. USA 83:5025 (1986).CrossRefGoogle Scholar
  86. 86.
    B. E. Huber and S. S. Thorgeirsson, Analysis of c-myc expression in a human hepatoma cell line, Cancer Res. 47:3414 (1987).PubMedGoogle Scholar
  87. 87.
    G. J. Cota and J.-F Chiu, The expression of oncogenes and liverspecific genes in Morris hepatomas, Biochem. Biophys. Res. Commun. 143:624 (1987).CrossRefGoogle Scholar
  88. 88.
    D. Corcos, N. Defer, M. Raymondjean, M. Paris, B. Corral, L. Tichonicky, J. Kruh, D. Glaise, A. Saulnier and C. Guguen-Guillouzo, Correlated increase of the expression of the c-ras genes in chemically induced hepatocarcinomas, Biochem. Biophys. Res. Commun. 122:259 (1984).PubMedCrossRefGoogle Scholar
  89. 89.
    A. Antony, P. M. Rao, S. Rajalakshmi and D. S. R. Sarma, Hypomethylation of DNA during early stages of chemical carcinogenesis, Proc. AACR, Abstr. No. 412, Cancer Res. 28:104 (1987).Google Scholar
  90. 90.
    M. Kirsch-Volders, Cytogenetic and genetic alterations during hepatocarcinogenesis. Proceedings of the European Meeting on Experimental Hepatocarcinognesis, Abstracts (SPA, Belgium, May, 1987).Google Scholar
  91. 91.
    A. Balmain, M. Ramsden, G. T. Bowden and J. Smith, Activation of the mouse cellular Harvey-ras genes in chemically induced benign skin papillomas, Nature 307:658 (1984).PubMedCrossRefGoogle Scholar
  92. 92.
    J. C. Pelling, S. M. Fisher, B. Neader, J. Strawhecker and L. Schwedckert, Elevated expression and point mutation of the Ha-ras proto-oncogene in mouse skin tumors promoted by benzoylperoxide and other promoting agents, Carcinogenesis 8:1481 (1987).PubMedCrossRefGoogle Scholar
  93. 93.
    A. P. Freinberg and B. Vogelstein, Hypomethylation of ras oncogenes in primary human cancers, Biochem. Biophys. Res. Commun. 198:47 (1983).CrossRefGoogle Scholar
  94. 94.
    M. S. C. Cheah, C. D. Wallace and R. M. Hoffman, Hypomethylation of DNA in human cancer cells: a site-specific change in the c-myc oncogene, J. Natl. Cancer Inst. 73:1057 (1984).PubMedGoogle Scholar
  95. 95.
    M. Ramsden, G. Cole, J. Smith and A. Balmain, Differential methylation of c-H-ras gene in normal mouse cells during skin tumour progression, EMBO J. 4:1449 (1985).PubMedGoogle Scholar
  96. 96.
    L. A. Poirier, Methyl insufficiency in carcinogenesis, this volume.Google Scholar
  97. 97.
    S. S. Thorgeirsson, S. H. Garfield, B. E. Huber and R. P. Evarts, Cellular and molecular aspects of chemical carcinogenesis, Proceedings of the Fourth Sardinian International Meeting: Models and Mechanisms in Chemical Carcinogenesis (Alghero, Italy, October 1987), Abstracts book, La Celere, Alghero (1987).Google Scholar
  98. 98.
    R. Makino, K. Hayashi and T. Sugimura, c-myc Transcript is induced in rat liver at a very early stage of regeneration of by cycloheximide treatment, Nature 310:697 (1984).PubMedCrossRefGoogle Scholar
  99. 99.
    M. Goyette, Ch. J. Petropoulos, P. R. Shank and N. Fausto, Expression of a cellular oncogene during liver regeneration, Science, 219:510 (1983).PubMedCrossRefGoogle Scholar
  100. 100.
    M. Barbacid, ras Genes, Ann. Rev. Biochem. 56:79 (1987).CrossRefGoogle Scholar
  101. 101.
    G. M. Cooper, Cellular oncogenes and Cancer, Clin. Physiol. Biochem. 5:122 (1987).PubMedGoogle Scholar
  102. 102.
    P. Kahn and Th. Graf (eds.) “Oncogenes and Growth Control”, Springer Verlag, Berlin (1986).Google Scholar
  103. 103.
    B. I. Weinstein, Growth factors, oncogenes and multistage carcinogenesis, J. Cell. Biochem. 33:231 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Francesco Feo
    • 1
  • Renato Garcea
    • 1
  • Lucia Daino
    • 1
  • Rosa Pascale
    • 1
  • Serenella Frassetto
    • 1
  • Patrizia Cozzolino
    • 1
  • Maria G. Vannini
    • 1
  • Maria E. Ruggiu
    • 1
  • Marilena Simile
    • 1
  • Marco Puddu
    • 1
  1. 1.Istituto di Patologia GeneraleUniversità di SassariSassariItaly

Personalised recommendations