Cytochromes P-450 as Determinants of Susceptibility to Carcinogenesis by Aromatic Amines and Nitroaromatic Hydrocarbons

  • Fred F. Kadlubar
  • F. Peter Guengerich
  • Mary Ann Butler
  • K. Barry Delclos


Aromatic amines and nitroaromatic hydrocarbons represent two major classes of occupational and environmental carcinogens. Aromatic amines are known to be present in the workplace, in cigarette smoke, synthetic fuels, and as pyrolysis products formed during the cooking of foods1–5; while nitroaromatic hydrocarbons have been used as dye intermediates, antimicrobial drugs, and food additives or have been detected as pollutants in coal fly ash, urban air samples, and emissions from auto, diesel, and airplane engines6. Epidemiological studies in humans and carcinogenicity experiments in laboratory animals have clearly indicated that these chemical carcinogens can induce cancers in several tissues, especially the urinary bladder, colon, liver, and lung7. For both aromatic amines and nitroaromatics, metabolic activation is a necessary prerequisite to the formation of carcinogen-DNA adducts; and cytochromes P-450 have been shown to play a major role in this process (reviewed in ref. 8). In this paper, the catalytic activity of specific cytochrome P-450 isozymes for the activation of these carcinogens will be discussed in relation to species and individual differences in cancer susceptibility.


Polycyclic Aromatic Hydrocarbon Aromatic Amine Polycyclic Hydrocarbon Carcinogenic Aromatic Amine Metabolic Activation Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. G. Parkes and A. E. J. Evans, Epidemiology of aromatic amine cancers, in: “Chemical Carcinogens”, C. E. Searle, ed., American Chemical Society, 2nd edition, Washington D.C., (1984).Google Scholar
  2. 2.
    C. Patrianakos and D. Hoffmann, Chemical studies on tobacco smoke, LXIV, On the analysis of aromatic amines in cigarette smoke, J. Anal. Toxicol. 3:150 (1979).CrossRefGoogle Scholar
  3. 3.
    D. Haugen, M. J. Peak, K. M. Suhrbler and V. C. Stamoudis, Isolation of mutagenic aromatic amines from coal conversion oil by cation exchange chromatography, Anal. Chem. 54:32 (1982).CrossRefGoogle Scholar
  4. 4.
    M. S. Bryant, P. S. Skipper, S. R. Tannenbaum and M. Mclure, Hemoglobin adducts of 4-aminobiphenyl in smokers and non-smokers, Cancer Res. 47:602 (1987).PubMedGoogle Scholar
  5. 5.
    R. Kato, Metabolic activation of heterocyclic aromatic amines from protein pyrolysates, CRC Crit. Rev. Toxicol. 16:307 (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    H. S. Rosenkranz and R. Mermelstein, The genotoxicity, metabolism and carcinogenicity of nitrated polycyclic aromatic hydrocarbons, J. Environ. Sci. Health 2:221 (1986).Google Scholar
  7. 7.
    R. C. Garner, C. N. Martin and D. B. Clayson, Carcinogenic aromatic amines and related compounds, in: “Chemical Carcinogens”, C. E. Searle, ed., American Chemical Society, 2nd edition, Washington D.C. (1984).Google Scholar
  8. 8.
    F. F. Kadlubar and G. J. Hammons, The role of cytochrome P-450 in the metabolism of chemical carcinogens, in: “Mammalian Cytochromes P-450” Vol. II, CRC Press, Boca Raton, FL, (1987).Google Scholar
  9. 9.
    D. M. Zeigler, Molecular basis for N-oxygenation of sec-and tertamines, in: “Biological Oxidation of Nitrogen in Organic Molecules”, J. Gorrod and L. A. Damani, eds., Ellis Horwood Ltd., Chichester, (1985).Google Scholar
  10. 10.
    F. A. Beland and F. F. Kadlubar, Formation and persistence of arylamine DNA adducts in vivo, Environ. Health Persp. 62:19 (1985).CrossRefGoogle Scholar
  11. 11.
    F. F. Kadlubar and F. A. Beland, Chemical properties of ultimate carcinogenic metabolites of arylamines and arylamides, in: “Polycyclic Hydrocarbons and Carcinogenesis”, ACS Symposium Series 283, R. G. Harvey, ed., American Chemical Society, Washington D.C., (1985).Google Scholar
  12. 12.
    S. S. Thorgeirsson, D. J. Jollow, H. A. Sasame I. Green, and J. R. Mitchell, The role of cytochrome P-450 in N-hydroxylation of 2-acetylaminofluorene, Mol. Pharmacol. 9:398–404 (1973).PubMedGoogle Scholar
  13. 13.
    F. F. Kadiubar, J. A. Miller and E. C. Miller, Microsomal N-oxidation of the hepatocarcinogen N-methyl-4-aminoazobenzene and the reactivity of N-hydroxy-N-methyl-4-aminoazobenzene, Cancer Res. 36:1196 (1976).Google Scholar
  14. 14.
    F. P. Guengerich, Enzymology of rat liver cytochromes P-450, in: “Mammalian Cytochromes P-450”, Vol. I, CRC Press, Boca Raton, FL (1985).Google Scholar
  15. 15.
    G. J. Hammons, F. P. Guengerich, C. C. Weis, F. A. Beland and F. F. Kadlubar, Metabolic activation of carcinogenic arylamines by rat, dog and human hepatic microsomes and by purified flavin-containing and cytochrome P-450 monooxygenases, Cancer Res. 45:3578 (1985).PubMedGoogle Scholar
  16. 16.
    F. F. Kadlubar, M. A. Butler, B. W. Hayes, F. A. Beland and F. P. Guengerich, Role of microsomal cytochrome P-450 and prostaglandin H synthase in 4-aminobiphenyl-DNA adduct formation, in: “Microsomes and Drug Oxidation”, D. W. Birkett et al., eds., Taylor and Francis, London, in press.Google Scholar
  17. 17.
    F. P. Guengerich, M. A. Butler, T. L. MacDonald and F. F. Kadlubar, Oxidation of carcinogenic arylamines by cytochrome P-450, in: “Carcinogenic and Mutagenic Responses to Aromatic Amines and Nitroarenes”, C. M. King, L. J. Romano, and D. Schuetzle eds., Elsevier, New York (1987).Google Scholar
  18. 18.
    R. Kato and Y. Yamazoe, Metabolic activation and covalent binding to nucleic acids of carcinogenic heterocyclic amines from cooked foods and amino acid pyrolysates, Jpn. J. Cancer Res. (Gann) 78:297 (1987).Google Scholar
  19. 19.
    M. A. Butler, K. B. Delclos, F. P. Guengerich and F. F. Kadlubar, unpublished data (1987).Google Scholar
  20. 20.
    F. P. Guengerich, D. R. Umbenhauer, P. F. Churchill, P. H. Beaune, R. Bocker, R. G. Knodell, M. V. Martin and R. S. Lloyd, Polymorphism of human cytochrome P-450, Xenobiotica 17:311 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    S. A. Wrighton, C. Campanile, P. E. Thomas, S. L. Maines, P. B. Watkins, G. Parker, G. Mendez-Picon, M. Haniu, J. E. Shively, W. Levin and P. S. Guzelian, Identification of a human liver cytochrome P-450 homologous to the major isosafrole-inducible cytochrome P-450 in the rat, Mol. Pharm. 29:405 (1986).Google Scholar
  22. 22.
    H. Devonshire, I. Kong, M. Cooper, T. Sloan, J. Idle and R. Smith, Contribution of genetically-determined oxidation status to interindividual variation in phenacetin disposition, Brit. J. Clin. Pharm. 16:157 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    F. A. Beland, R. H. Heflich, P. C. Howard and P. P. Fu, The in vitro metabolic activation of nitro polycyclic aromatic hydrocarbons, in: “Polycyclic Hydrocarbons and Carcinogenesis”, R. G. Harvey, ed., ACS Symposium Series Number 283, American Chemical Society, Washington D.C., (1985).Google Scholar
  24. 24.
    K. Saito, T. Kamataki and R. Kato, Participation of cytochrome P-450 in reductive metabolism of 1-nitropyrene by rat liver microsomes, Cancer Res. 44:3169 (1984).PubMedGoogle Scholar
  25. 25.
    P. G. Wislocki, E. S. Bagan, A. Y. H. Lu, K. L. Dooley, P. P. Fu, H. Han-Hsu, F. A. Beland and F. F. Kadlubar, Tumorigenicity of nitrated derivatives of pyrene, benzo[a]anthracene, chrysene and benzo[a]pyrene in the newborn mouse assay, Carcinogenesis 7:1317 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    W. F. Busby, Jr., R. C. Garner, F.-L. Chow, C. N. Martin, E. K. Stevens, P. M. Newberne and G. N. Wogan, 6-Nitrochrysene is a potent tumorigen in newborn mice, Carcinogenesis 6:801 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    K. B. Delclos, D. W. Miller, J. O. Lay, Jr., D. A. Casciano, R. P. Walker, P. P. Fu and F. F. Kadlubar, Identification of C8-modified deoxyinosine and N2-and C8-modified deoxyguanosine as major products of the in vitro reaction of N-hydroxy-6-aminochrysene with DNA and the formation of these adducts in isolated rat hepatocytes, Carcinogenesis 8:1703 (1987).PubMedCrossRefGoogle Scholar
  28. 28.
    K. B. Delclos, R. P. Walker, K. L. Dooley, P. P. Fu and F. F. Kadlubar, Carcinogen-DNA adduct formation in the lungs and livers of preweanling CD-1 male mice following administration of [3H]6-nitrochrysene, [3H]6-aminochrysene and [3H]l,6-dinitropyrene, Cancer Res. (1987), in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Fred F. Kadlubar
    • 1
  • F. Peter Guengerich
    • 1
    • 2
  • Mary Ann Butler
    • 1
  • K. Barry Delclos
    • 1
  1. 1.National Center for Toxicological ResearchJeffersonUSA
  2. 2.Vanderbilt UniversityNashvilleUSA

Personalised recommendations