Genetic Approaches to the Synthesis and Physiological Significance of B12 in Salmonella typhimurium

  • John R. Roth
  • Charlotte Grabau
  • Thomas G. Doak
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


In the bacterium Salmonella typhimurium the biosynthetic genes for cobalamin are located in three separated regions of the genetic map. Most synthetic genes (approximately 20 of 25) are located in a single large operon whose expression is stimulated by cAMP and by a reduced cell interior; this operon is repressed by adenosyl-B12. Nutritional requirements of mutants suggest that an early intermediate in corrinoid biosynthesis (prior to cobyric acid in the pathway) is adenosylated and that adenosyl cobinamide is an obligatory precursor to completion of cobalamin synthesis (addition of dimethyl benzimidazole). Only one gene has been associated with the ability to perform adenosylation in the de novoe pathway; this gene is one of several alternatives needed to adenosylate exogenouse corrinoids. One gene has been associated with ability to synthesize aminopropanol.

Salmonella uses about 1% of its genome to encode the synthesis and transport of B12. While this large genetic investment suggests an important physiological role for the cofactor, the four known B12-dependent functions do not appear to be essential for growth of wild type Salmonella under the laboratory conditions tested. It is particularly puzzling that Salmonella only synthesizes B12 when growing anaerobically.


Anaerobic Condition Methionine Synthesis Operon Expression Main Promoter Homocysteine Methyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Jeter, R. M., B. M. Olivera, and J. R. Roth 1984. Salmonella typhimuriuim synthesizes cobalamin (vitamin B12) de. novo under anaerobic growth conditions. J. Bacteriol. 170: 2078–2082.Google Scholar
  2. 2.
    Sanderson, K. E., and J. R. Roth 1988. The linkage map of Salmonella typhimurium; Edition VII. Microbiological Reviews 52: 485–532.PubMedGoogle Scholar
  3. 3.
    Jeter, R. M., and J. R. Roth. 1987. Cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J. Bacteriol 169: 3189–3198.PubMedGoogle Scholar
  4. 4a.
    Escalante-Semerena, J. C., S.-J. Suh and J. R. Roth. 1990 The cobA function is required for both de novo cobalamin biosynthesis and assimilation of exogenous corrinoids in Salmonella typhimurium. J. Bacteriol. 172: 273–280.PubMedGoogle Scholar
  5. 4b.
    Lundrigan, M. D., and R. J. Kadner. 1989. Altered cobalamin metabolism in Escherichia coli btuR mutants affects btuB gene regulation. J. Bacteriol. 171: 154–161.PubMedGoogle Scholar
  6. 5.
    Reynolds, R., G. Mottur and C. Bradbeer 1980 Transport of Vitamin B12 in Escherichia coli J. Biol. Chem. 255: 4313–4319.PubMedGoogle Scholar
  7. 6.
    Bassford Jr., P., and R. J. Kadner 1977 Genetic Analysis of components involved in Vitamin B12 uptake in Escherichia coli. J. Bacteriol. 132: 796–805.PubMedGoogle Scholar
  8. 7.
    Sennett, K., L. Rosenberg and I. Mellman. 1981. Transmembrane transport of cobalamin in prokaryotic and eukaryotic cells. Annu. Rev. Biochem. 50: 1053–1086.PubMedCrossRefGoogle Scholar
  9. 8.
    Jeter, R. M. 1990. Cobalamin dependent 1, 2-propanediol utilization by Salmonella typhimurium. submitted to J. Gen. Microbiol.Google Scholar
  10. 9.
    Escalante-Semerena, J. C., and J. R. Roth. 1987. Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. J. Bacteriol. 169: 2251–2258.PubMedGoogle Scholar
  11. 10.
    Andersson, D. and J. R. Roth. 1989. Mutations affecting regulation of the cobinamide biosynthetic genes in Salmonella typhimurium. J. Bacteriol. 171: 6726–6733.PubMedGoogle Scholar
  12. 11.
    Andersson, D. and J. R. Roth. 1989. Redox regulation of the cobinamide biosynthetic genes in Salmonella typhimurium. J. Bacteriol 171: 6734–6739.PubMedGoogle Scholar
  13. 12.
    Roof, D. M., and J. R. Roth. 1988. Ethanolamine utilization in Salmonella typhimurium. J. Bacteriol. 170: 3855–3863.PubMedGoogle Scholar
  14. 13.
    Roof, D. M., and J. R. Roth. 1988. Functions required for vitamin B12-dependent ethanolamine utilization in Salmonella typhimurium. J. Bacteriol. 171: 3316–3323.Google Scholar
  15. 14.
    Obradors, N., J. Badia, L. Baldomà and J. Aguilar. 1988. Anaerobic metabolism of the L-rhamnose fermentation product 1, 2-propanediol in Salmonella typhimurium. J. Bacteriol. 170: 2159–2162.PubMedGoogle Scholar
  16. 15.
    Frey, B., J. McCloskey, W. Kersten, and H. Kersten. 1988. New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 170: 2078–2082.PubMedGoogle Scholar
  17. 16.
    Fontecave, M., R. Eliasson, and R. Reichart. 1989 Oxygen-sensitive ribonucleotide triphosphate reductase is present in anaerobic Escherichia coli. Proc. Natl. Acad. Sci (US) 86: 2147–2151.CrossRefGoogle Scholar
  18. 17.
    Eschenmoser, A. 1988. Vitamin B12: Experiments concerning the origin of its molecular structure. Angew. Chem. Int. Ed. Engl. 21 5–39.CrossRefGoogle Scholar
  19. 18.
    Georgopapadakou, N. H. and A. I. Scott 1977. On B12 biosynthesis and evolution. J. Theor. Biol. 69: 381–384.PubMedCrossRefGoogle Scholar
  20. 19.
    Johnston, H., W. Barnes, F. Chumley, L. Bossi and J. Roth. 1980. A model for regulation of the histidine operon of Salmonella typhimurium. Proc. Natl Acad Sci USA 77: 508–512.PubMedCrossRefGoogle Scholar
  21. 20a.
    Vitols, E., G. A. Walker, and F. M. Huennekens. 1966. Enzymatic conversion of vitamin B12 to a cobamide coenzyme, aaaaa05, 6 dimethylabenzimidazole) deoxyadenosyl cobamide (adenosyl-B12) J. Biol. Chem. 241:1455.PubMedGoogle Scholar
  22. 20b.
    Walker, G. A., S. Murphy, and F. M. Huennekens. 1969. Enzymatic conversion of vitamin B12 to adenosyl-B12: evidence for the existence of two separate reducing systems. Arch. Biochem. Biophys.Google Scholar
  23. 21.
    Neuberger, A. and G. H. Tait. 1960. The enzymic conversion of threonine to aminoacetone. Biochim. Biophys. Acta 41: 164–165.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • John R. Roth
    • 1
  • Charlotte Grabau
    • 1
  • Thomas G. Doak
    • 1
  1. 1.Department of BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations