Advertisement

Biosynthesis of Vitamin B12: Biosynthetic and Synthetic Researches

  • Alan R. Battersby
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)

Abstract

The problem posed by the biosynthesis of vitamin B12 is one of the most formidable and challenging in the whole area of biosynthetic research. What I hope to illustrate is how such a problem can be attacked using the traditional strengths of organic chemistry, provided one is also able to draw upon many other related areas of knowledge and expertise. The ones of particular importance in our work on B12 have been those involving sophisticated n.m.r. spectroscopy combined with isotopic labelling, enzymology, kinetics, genetics and molecular biology.1

Keywords

Porphobilinogen Deaminase Natural Porphyrin Cobyrinic Acid Spiro Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For reviews see A. R. Battersby and E. McDonald in “Vitamin B121”, ed. D. Dolphin, Wiley, New York, p. 107 (1982).Google Scholar
  2. A. R. Battersby, Biosynthesis of Vitamin B12. Accs. Chem. Res., 19, 147 (1986).CrossRefGoogle Scholar
  3. A. R Battersby, Synthetic and Biosynthetic Studies on Vitamin B12. J. Nat Prod., 51, 643 (1988).PubMedCrossRefGoogle Scholar
  4. 2.
    A. R Battersby, C. J. R Fookes, G. W. J. Matcham and E. McDonald, Biosynthesis of the Pigments of Life: Formation of the Macrocycle, Nature, 285, 17, (1980).PubMedCrossRefGoogle Scholar
  5. 3.
    A. R Battersby, E. Hunt and E. McDonald, Biosynthesis of Type-III Porphyrins: Nature of the Rearrangement Process, J. Chem. Soc., Chem. Commun., 442 (1973).Google Scholar
  6. A R Battersby, G. L. Hodgson, E. Hunt, E. McDonald and J. Saunders, Nature of the Rearrangement Process Leading to the Natural Type III Porphyrins, J. Chem. Soc., Perkin Trans. 1, 273 (1976).CrossRefGoogle Scholar
  7. 4.
    A. R Battersby, C. J. R. Fookes, M. J. Meegan, E. McDonald and H. K. W. Wurziger, Proof that the Single Intramolecular Rearrangement Leading to Natural Porphyrins (Type-III) occurs at the Tetrapyrrole Level, J. Chem. Soc., Perkin Trans. 1, 2786 (1981).CrossRefGoogle Scholar
  8. A. R Battersby, C. J. R Fookes, K. E. Gustafson-Potter, E. McDonald and G. W. J. Matcham, Chemical and Enzymic Transformation of Isomeric Aminomethylbilanes into Uroporphyrinogens: Proof that Unrearranged Bilane is the Preferred Enzymic Substrate and Detection of a Transient Intermediate, J. Chem. Soc., PerkinTrans. 1, 2413 (1982).CrossRefGoogle Scholar
  9. 5.
    A. R. Battersby, C. J. R Fookes, K. E. Gustafson-Potter, E. McDonald and G. W. J. Matcham, Proof by Spectroscopy and Synthesis that Unrearranged Hydroxymethylbilane is the Product from Deaminase and the Substrate for Cosynthetase in the Biosynthesis of Uroporphyrinogen-III, J. Chem. Soc., Perkin Trans. 1, 2427 (1982).CrossRefGoogle Scholar
  10. 6.
    A. R. Battersby, C. J. R Fookes, G. W. J. Matcham and E. McDonald, Order of Assembly of the Four Pyrrole Rings during Biosynthesis of the Natural Porphyrins, J. Chem. Soc, Chem. Commun., 539 (1979).Google Scholar
  11. 7.
    A. R Battersby, C. J. R Fookes, G. W. J. Matcham, E. McDonald and R Hollenstein, Purification of Deaminase and Studies on its Mode of Action, J. Chem. Soc., Perkin Trans. 1, 3031 (1983).CrossRefGoogle Scholar
  12. 8.
    A. R Battersby, C. J. R Fookes, G. J. Hart, G. W. J. Matcham and P. S. Pandey, The Interaction of Deaminase and its Product (Hydroxymethylbilane) and the Relationship between Deaminase and Cosynthetase, J. Chem. Soc., Perkin Trans. 1, 3041 (1983).CrossRefGoogle Scholar
  13. 9.
    P. M. Jordan and A. Berry, Mechanism of action of porphobilinogen deaminase, Biochem. J., 195, 177 (1981).PubMedGoogle Scholar
  14. 10.
    R. Radmer and L. Bogorad, A Tetrapyrrylmethane Intermediate in the Enzymatic Synthesis of Uroporphyrinogen, Biochemistry, 11, 904 (1972).PubMedCrossRefGoogle Scholar
  15. R. C. Davies and A. Neuberger, Polypyrroles Formed from Porphobilinogen and Amines by Uroporphyrinogen Synthetase of Rhodopseudomonas spheroides, 133, 471 (1973).Google Scholar
  16. 11.
    For recent instances see A. I. Scott, C. A. Roessner, N. J. Stolowich, P. Karuso, H. J. Williams, S. K. Grant, M. D. Gonzalez and T. Hoshino, Site-Directed Mutagenesis and High-Resolution NMR Spectroscopy of the Active Site of Porphobilinogen Deaminase, Biochemistry, 27, 7984 (1988).PubMedCrossRefGoogle Scholar
  17. S. Rosé, R. B. Frydman, C. de los Santos, A. Sburlati, A. Valasinas and B. Frydman, Spectroscopic Evidence for a Porphobilinogen Deaminase-Tetrapyrrole Complex that is an Intermediate in the Biosynthesis of Uroporphyrinogen III, Biochemistry, 27, 4871 (1988).PubMedCrossRefGoogle Scholar
  18. 12.
    J.-R. Schauder, S. Jendrzjewski, A. Abell, G. J. Hart and A. R Battersby. Stereochemistry of Formation of the Hydroxymethyl Group of Hydroxymethylbilane, the Precursor of Uro’gen-III, J. Chem. Soc, Chem. Commun., 436 (1987).Google Scholar
  19. 13.
    W. Neidhart, P. C. Anderson, G. J. Hart and A. R Battersby, Synthesis of (11S)-and (11R)-[11-2H1]Porphobilinogen; Stereochemical Studies on Hydroxymethylbilane Synthase (PBG Deaminase), J. Chem. Soc., Chem.Commun., 924 (1985).Google Scholar
  20. 14.
    A. R. Battersby, Biosynthesis of the Pigments of Life, Ann. N. Y. Acad. Sci, Vol. 471, p. 138 (1986).PubMedCrossRefGoogle Scholar
  21. 15.
    A. D. Miller, F. J. Leeper and A. R Battersby, Synthesis and Properties of S-Pyrrolylmethylcysteinyl and ε-N-Pyrrolylmethyllysyl Peptides, J. Chem. Soc. Perkin Trans. 1, 1943 (1989).CrossRefGoogle Scholar
  22. 16.
    P. M. Anderson and R. J. Desnick, Purification and Properties of Uroporphyrinogen I Synthase from Human Erythrocytes, J. Biol. Chem., 255, 1993 (1980).PubMedGoogle Scholar
  23. 17.
    S. D. Thomas and P. J. Jordan, Nucleotide Sequence of a Hem-C locus encoding porphobilinogen deaminase of Escherichia Coli K-12, Nucleic Acids Res., 14, 6215(1986).PubMedCrossRefGoogle Scholar
  24. 18.
    A. Sasarman, A. Nepveu, Y. Echelard, J. Dymetryszyn, M. Drolet and C. Goyer, Molecular Cloning and Sequencing of the Hem-D Gene of Escherichia-Coli K-12 and Preliminary Data on the Uro Operon, J. Bacterial., 169, 4257 (1987).Google Scholar
  25. 19.
    P. R Alefounder, C. Abell and A. R. Battersby, The sequence of hemC, hemD and two additional E. coli genes, Nucleic Acids Res., 16, 9871 (1988).PubMedCrossRefGoogle Scholar
  26. 20.
    A. D. Miller, L. C. Packman, G. J. Hart, P. R Alefounder, C. Abell, and A. R. Battersby, Evidence that pyridoxal phosphate modification of lysine residues (Lys-55 and Lys-59) causes inactivation of hydroxymethylbilane synthase (porphobilinogen deaminase), Biochem. J., 262, 119 (1989).PubMedGoogle Scholar
  27. 21.
    G. J. Hart, A. D. Miller, F. J. Leeper and A. R Battersby, Proof that Hydroxymethylbilane Synthase (PBG Deaminase) uses a Novel Binding Group in its Catalytic Action, J. Chem. Soc., Chem. Commun., 1762 (1987).Google Scholar
  28. 22.
    G. J. Hart, A. D. Miller, U. Beifuss, F. J. Leeper and A. R Battersby, Discovery of a Novel Dipyrrolic Cofactor Essential for the Catalytic Action of Hydroxymethylbilane Synthase (PBG Deaminase), J. Chem. Soc. Perkin Trans. 1 (1990), in press.Google Scholar
  29. 23.
    J. Pluscec and L. Bogorad, A Dipyrrylmethane Intermediate in the Enzymatic Synthesis of Uroporphyrinogen, Biochemistry, 9, 4736 (1970).PubMedCrossRefGoogle Scholar
  30. 24.
    G. J. Hart A. D. Miller and A. R Battersby, Evidence that the pyrromethane cofactor of hydroxymethylbilane synthase (PBG deaminase) is bound through the sulphur atom of a cysteine residue, Biochem. J., 252, 909 (1988).PubMedGoogle Scholar
  31. 25.
    U. Beifuss, G. J. Hart, A. D. Miller and A. R Battersby, 13C-N.M.R Studies on the Pyrromethane Cofactor of Hydroxymethylbilane Synthase, Tetrahedron Letts., 2591 (1988).Google Scholar
  32. 26.
    A. D. Miller, G. J. Hart, L. C. Packman, and A. R. Battersby, Evidence that the pyrromethane cofactor of hydroxymethylbilane synthase (porphobilinogen deaminase) is bound to the protein through the sulphur atom of cysteine-242, Biochem. J., 254, 915 (1988).PubMedGoogle Scholar
  33. 27.
    P. R Alefounder, G. J. Hart, A. D. Miller, U. Beifuss, C. Abell, F. J. Leeper and A. R. Battersby, Biosynthesis of the Pigments of Life: Structure and Mode of Action of a Novel Enzymatic Cofactor, Bioorganic Chemistry, 17, 121 (1989).CrossRefGoogle Scholar
  34. 28.
    P. M. Jordan and M. J. Warren, Evidence for a Dipyrromethane Cofactor at the Catalytic Site of Escherichia-Coli Porphobilinogen Deaminase, FEBS Lett, 225, 87 (1987).PubMedCrossRefGoogle Scholar
  35. 29.
    P. M. Jordan, S. D. Thomas, and M. J. Warren, Purification Crystallization and Properties of Porphobilinogen Deaminase from a Recombinant Strain of Escherichia-Coli K12, Biochem. J., 254, 427 (1988).PubMedGoogle Scholar
  36. 30.
    P. M. Jordan, M. J. Warren, H. J. Williams, N. J. Stolowich, C. A. Roessner, S. K. Grant, and A. I. Scott, Identification of a Cysteine Residue as the Binding Site for the Dipyrromethane Cofactor at the Active Site of Escherichia-Coli Porphobilinogen Deaminase, FEBS Lett., 235, 189 (1988).PubMedCrossRefGoogle Scholar
  37. 31.
    A. I. Scott, N. J. Stolowich, H. J. Williams, M. D. Gonzalez, C. A. Roessner, S. K. Grant, and C. Pichon, Concerning the Catalytic Site of Porphobilinogen Deaminase, J. Amer, Chem Soc., 110, 5898 (1988).CrossRefGoogle Scholar
  38. A. I. Scott, C. A. Roessner, N. J. Stolowich, P. Karuso, H. J. Williams, S. K. Grant, M. D. Gonzalez, and T. Hoshino, Site-Directed Mutagenesis and High-Resolution NMR Spectroscopy of the Active Site of Porphobilinogen Deaminase, Biochemistry, 27, 7984 (1988).PubMedCrossRefGoogle Scholar
  39. 32.
    J. H. Mathewson and A. H. Corwin, Biosynthesis of Pyrrole Pigments: A Mechanism for Porphobilinogen Polymerization, J. Amer. Chem. Soc., 83, 135(1961).CrossRefGoogle Scholar
  40. 33.
    W. M. Stark, M. G. Baker, P. R. Raithby, F. J. Leeper and A. R. Battersby, The Spiro Intermediate Proposed for Biosynthesis of the Natural Porphyrins: Synthesis and Properties of Its Macrocycle, J. Chem. Soc., Chem. Commun., 1294 (1985).Google Scholar
  41. W. M. Stark, M. G. Baker, F. J. Leeper, P. R Raithby and A. R. Battersby, Synthesis of the Macrocycle of the Spiro System Proposed as an Intermediate Generated by Cosynthetase., J. Chem. Soc. Perkin Trans. 1, 1187(1988).CrossRefGoogle Scholar
  42. 34.
    W. M. Stark, G. J. Hart and A. R Battersby, Synthetic Studies on the Proposed Spiro Intermediate for Biosynthesis of the Natural Porphyrins: Inhibition of Cosynthetase, J. Chem. Soc., Chem. Commun., 465 (1986).Google Scholar
  43. 35.
    A. I. Scott, C. A. Townsend, K. Okada and M. Kajiwara, Biosynthesis of Corrins. I. Experiments with [14C]Porphobilinogen and [14C]Uroporphyrinogens, J. Amer. Chem. Soc., 96, 8054 (1974).CrossRefGoogle Scholar
  44. A. I. Scott, N. Georgopapadakou, K. S. Ho, S. Klioze, E. Lee, S. L. Lee, G. H. Jemme III, C. A. Townsend and I. A. Armitage, Concerning the Intermediacy of Uro’gen III and of a Heptacarboxylic Uro’gen in Corrinoid Biosynthesis, J. Amer. Chem. Soc., 97, 2548 (1975).CrossRefGoogle Scholar
  45. 36.
    A. R. Battersby, M. Ihara, E. McDonald, F. Satoh and D. C. Williams, Derivation of Cobyrinic Acid from Uroporphyrinogen-III, J. Chem. Soc, Chem. Commun., 436 (1975).Google Scholar
  46. A. R Battersby, E. McDonald, R Hollenstein, M. Corresponding Ring-C Methyl Heptacarboxylic Porphyrinogen and Proof of Seven Intact Methyl Transfers, J. Chem. Soc. Perkin 1, 166 (1977).CrossRefGoogle Scholar
  47. 37.
    H.-O. Dauner and G. Müller, Bildung von Cobyrin saure Mittels eines Zelltreien System aus Clostridium Tetanomorphum, Z. physiol. Chem., 356, 1353 (1975).CrossRefGoogle Scholar
  48. 38.
    A. R Battersby, K. Jones, E. McDonald, J. A. Robinson and H. R Morris, The Structure and Chemistry of Isobacteriochlorins from Desulphovibrio gigas, Tetrahedron Letts., 2213 (1977).Google Scholar
  49. A. R. Battersby. E. McDonald, H. R Morris, M. Thompson, D. C. Williams, V. Ya Bykhovsky, N. Zaitseva and V. Bukin, Biosynthesis of Vitamin B12: Structural Studies on the Corriphyrins from Propionibacterium shermanii and the Link with Sirohydrochlorin, Tetrahedron Letts., 2217 (1977).Google Scholar
  50. 39.
    A. R. Battersby, E. McDonald, M. Thompson and V. Ya Bykhovsky, Proof of A-B structure for Sirohydrochlorin by its Specific Incorporation into Cobyrinic Acid, J. Chem. Soc, Chem. Commun., 150 (1978).Google Scholar
  51. 40.
    A. R Battersby, G. W. J. Matcham, E. McDonald, R Neier, M. Thompson, W.-D. Woggon, V. Ya Bykovsky and H. R Morris, Structure of the Trimethylisobacteriochlorin from Propionibacterium shermanii, J. Chem. Soc., Chem Commun., 185 (1979); N. G. Lewis, R Neier, G. W. J. Matcham, E. McDonald and A. R. Battersby, Vitamin B12: Experiments on Loss of C-20 from the Precursor Macrocycle, J. Chem. Soc, Chem Commun., 541 (1979).Google Scholar
  52. 41.
    A. R Battersby, K. Frobel, F. Hammerschmidt and C. Jones, Isolation of 15, 23-Dihydrosirohydrochlorin, a Biosynthetic Intermediate: Structural Studies and Incorporation Experiments, J. Chem. Soc., Chem. Commun., 455 (1982).Google Scholar
  53. 42.
    L. Mombelli, C. Nussbaumer, H. Weber, G. Müller and D. Arigoni, Biosynthesis of vitamin B12: Mode of incorporation of factor III into cobyrinic acid, Proc. Natl. Acad. Sci. U.S.A., 78, 11(1981).PubMedCrossRefGoogle Scholar
  54. 43.
    A. R. Battersby, M. J. Bushell, C. Jones, N. G. Lewis and A. Pfenninger, Identity of Fragment Extruded During Ring Contraction to the Corrin Macrocycle, Proc. Natl. Acad. Sci. U.S.A., 78, 13 (1981).PubMedCrossRefGoogle Scholar
  55. 44.
    M. Imfeld, D. Arigoni, R Deeg and G. Müller, in “Vitamin B12”, Factor I ex Clostridium tetanomorphum: Proof of Structure and Relationship to Vitamin B12 Biosynthesis, eds. B. J. Zagalak and W. Friedrich, de Gruyter, Berlin, p. 315 (1979).Google Scholar
  56. 45.
    A. R Battersby, R D. Brunt, F. J. Leeper and I. Grgurina, Vitamin B12: Synthesis of (±)-[5-13C]Faktor-1 Ester: Determination of the Oxidation State of Precorrin-1, J. Chem. Soc., Chem. Commun., 428 (1989).Google Scholar
  57. 46.
    H. C. Uzar and A. R Battersby, Vitamin B12: Pulse Labelling to Locate the Fourth Methylation Site, J. Chem. Soc, Chem. Commun., 1204 (1982).Google Scholar
  58. 47.
    H. C. Uzar and A. R. Battersby, Vitamin B12: Order of the Later C-Methylation Steps, J. Chem Soc., Chem Commun., 585 (1985).Google Scholar
  59. A R. Battersby, H. C. Uzar, T. A. Carpenter and F. J. Leeper, Development of a Pulse Labelling Method to Determine the C-Methylation Sequence for Vitamin B12, J. Chem. Soc, Perkin Trans. 1, 1689 (1987).Google Scholar
  60. 48.(a)
    A. I. Scott, N. E. Mackenzie, P. J. Santander, P. E. Fagerness, G. Müller, E. Schneider, R Sedlmeier and G. Wörner, Biosynthesis of Vitamin B12: Timing of the Methylation steps between Uro’gen III and Cobyrinic Acid, Bioorg. Chem, 12, 356(1984)CrossRefGoogle Scholar
  61. (b)_A. I. Scott, H. J. Williams, N. J. Stolowich, P. Karuso and M. D. Gonzalez, Temporal Resolution of the Methylation Sequence of Vitamin B12 Biosynthesis, J. Amer. Chem. Soc., 111, 1897 (1989).CrossRefGoogle Scholar
  62. 49.
    A. R. Battersby, F. Blanche, S. Handa, D. Thibaut, C. L. Gibson and F. J. Leeper, Vitamin B12: When is the 12β-Methyl Group of the Vitamin Generated by Acetate Decarboxylation?, J. Chem. Soc, Chem. Commun., 1117 (1988).Google Scholar
  63. 50.
    S. P. D. Turner, M. H. Block, Z.-C. Sheng, S. C. Zimmerman, and A. R. Battersby, Synthetic Studies on Vitamin B12. Synthesis of (±)-Faktor-l Octamethyl Ester, J. Chem Soc Perkin Trans. 1, 1577 (1988).Google Scholar
  64. 51.
    M. H. Block, S. C. Zimmerman, G. B. Henderson, S. P. D. Turner, S. W. Westwood, F. J. Leeper and A. R Battersby, Synthesis of Sirohydrochlorin and of its Octamethyl Ester, J. Chem Soc., Chem. Commun., 1061 (1985).Google Scholar
  65. 52.
    W. G. Whittingham, M. K. Ellis, P. Guerry, G. B. Henderson, B. Müller, D. A. Taylor, F. J. Leeper and A. R. Battersby, Syntheses Relevant to Vitamin B12 Biosynthesis: Synthesis of the 2,7,20-Trimethylisobacteriochlorin, J. Chem Soc., Chem. Commun., 1116 (1989).Google Scholar
  66. 53.
    B. Müller, A. N. Collins, M. K. Ellis, W. G. Whittingham, F. J. Leeper and A. R. Battersby, Syntheses Relevant to Vitamin B12 Biosynthesis: Synthesis of the 2,7,12,20-Tetramethylisobacteriochlorin, J. Chem. Soc, Chem Commun., 1119 (1989).Google Scholar
  67. 54.
    P. J. Harrison, Z.-C. Sheng, C. J. R. Fookes, and A. R Battersby, Development of the Photochemical Route to Isobacteriochlorins, J. Chem. Soc. Perkin Trans. 1, 1667 (1987).CrossRefGoogle Scholar
  68. 55.
    K. Tomioka, Y.-S. Cho, F. Sato and K. Koga, Highly Stereoselective Construction of Chiral Quaternary Carbon: Asymmetric Synthesis of β,β-Disubstituted γ-Butyrolactones, Chem. Lett., 1621 (1981).Google Scholar
  69. 56.
    Inter alia, C. Leumann, K. Hilpert, J. Schreiber and A. Eschenmoser, Chemistry of Pyrrocorphins: C-Methylations at the Periphery of Pyrrocorphins and Related Corphinoid Ligand Systems, J. Chem. Soc., Chem. Commun., 1404 (1983).Google Scholar
  70. 57.
    C. L. Gibson and A. R Battersby, Biosynthesis of Vitamin B12: Synthesis and Peripheral C-Methylation of Pyrrocorphins Carrying Ester Side Chains, J. Chem. Soc., Chem. Commun., 590 (1989).Google Scholar
  71. 58.
    C. L. Gibson and A. R. Battersby, Biosynthesis of Vitamin B12: Regio-control in Peripheral C-Methylation of 20-Methylpyrrocorphins carrying Ester Side Chains, J. Chem. Soc., Chem. Commun., 1223 (1989).Google Scholar
  72. 59.
    C. L. Gibson, F. Blanche and A. R Battersby, unpublished work, Cambridge, 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Alan R. Battersby
    • 1
  1. 1.University Chemical LaboratoryCambridgeUK

Personalised recommendations