Catalytic Antibodies: Perspectives and Prospects

  • Donald Hilvert
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


Enzymes make complex life possible. With very few exceptions, each of the tens of thousands of chemical reactions that sustain living systems takes place quickly and smoothly through the action of a specific enzyme. The high rates and selectivities of enzymes make them ideal catalysts for in vitro processes, as well, and they are being utilized increasingly in research, industry, and medicine.


Transition State Structure Catalytic Antibody Claisen Rearrangement Chorismate Mutase Transition State Analog 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Kabat, “Structural Concepts in Immunology and Immunochemistry,” Holt, Reinhart and Winston, New York, 1976.Google Scholar
  2. D. Pressman and A. Grossberg, “The Structural Basis of Antibody Specificity,” Benjamin, New York, 1968Google Scholar
  3. A. Nisonoff, J. Hopper and S. Spring, “The Antibody Molecule,” Academic Press, New York, (1975).Google Scholar
  4. 2.
    L. Pauling, Chemical achievement and hope for the future, Amer. Sci. 36:51 (1948).PubMedGoogle Scholar
  5. 3.
    W. P. Jencks, “Catalysis in Chemistry and Enzymology,” McGraw Hill, New York, p.288 (1969).Google Scholar
  6. 4.
    R. Wolfenden, Transition state analog inhibitors and enzyme catalysis, Ann. Rev. Biophys. Bioeng. 5:271 (1976).CrossRefGoogle Scholar
  7. G. E. Lienhard, Enzymatic catalysis and transition-state theory, Science 180:149 (1973).PubMedCrossRefGoogle Scholar
  8. 5.
    J. Sauer, Diels-Alder reactions: New preparative aspects, Angew. Chem., Int. Ed. Engl. 5:211 (1966); Diels-Alder reactions: The reaction mechanism, ibid. 6:16 (1967).CrossRefGoogle Scholar
  9. A. Wassermann, “Diels-Alder Reactions”, Elsevier Publ. Co.; Amsterdam, (1965).Google Scholar
  10. 6.
    M. I. Page and W. P. Jencks, Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect, Proc. Nat. Acad. Sci. USA 68:1678 (1971).PubMedCrossRefGoogle Scholar
  11. W. P. Jencks, Binding energy, specificity, and enzymic catalysis: The Circe effect, Adv. Enzymol. 43:219 (1975).PubMedGoogle Scholar
  12. 7.
    D. Hilvert, K. W. Hill, K. D. Nared, and M.-T. M. Auditor, Antibody catalysis of a Diels-Alder reaction, J. Am. Chem. Soc. 111:9261 (1989).CrossRefGoogle Scholar
  13. 8.
    F. K. Brown and K. N. Houk, The STO-3G transition structure of the Diels-Alder reaction, Tetrahedron Lett. 25:4609 (1984).CrossRefGoogle Scholar
  14. 9.
    F. E. Ziegler, The thermal aliphatic Claisen rearrangement, Chem. Rev. 88:1423 (1988).CrossRefGoogle Scholar
  15. R. P. Lutz, Catalysis of the Cope and Claisen rearrangements, Chem. Rev. 84:205 (1984).CrossRefGoogle Scholar
  16. 10.
    P. R. Andrews, E. N. Cain, E. Rizzardo, and G. D. Smith, Rearrangement of chorismate to prephenate. Use of chorismate mutase inhibitors to define the transition state structure, Biochemistry 16:4848 (1977).PubMedCrossRefGoogle Scholar
  17. H. S.-I. Chao and G. A. Berchtold, Inhibition of chorismate mutase activity of chorismate mutase-prephenate dehydrogenase from Aerobacter aerogenes, Biochemistry 21:2778 (1982).PubMedCrossRefGoogle Scholar
  18. 11.
    S. G. Sogo, T. S. Widlanski, J. H. Hoare, C. E. Grimshaw, G. A. Berchthold, and J. R. Knowles, Stereochemistry of the rearrangement of chorismate to prephenate: Chorismate mutase involves a chair transition state, J. Am. Chem. Soc. 106:2701 (1984).CrossRefGoogle Scholar
  19. 12.
    P. A. Bartlett and C. R. Johnson, An inhibitor of chorismate mutase resembling the transition-state conformation, J. Am. Chem. Soc. 107:7792 (1985).CrossRefGoogle Scholar
  20. 13.
    D. Hilvert, S. H. Carpenter, K. D. Nared, and M.-T. M. Auditor, Catalysis of concerted reactions by antibodies: The Claisen rearrangement, Proc. Natl. Acad. Sci. USA 85:4953 (1988).PubMedCrossRefGoogle Scholar
  21. 14.
    D. Y. Jackson, J. W. Jacobs, R. Sugasawara, S. H. Reich, P. A. Bartlett, and P. G. Schultz, An antibody-catalyzed Claisen rearrangement, J. Am. Chem. Soc. 110:4841 (1988).CrossRefGoogle Scholar
  22. 15.
    D. Hilvert and K. D. Nared, Stereospecific Claisen rearrangement catalyzed by an antibody, J. Am. Chem. Soc. 110:5593 (1988).CrossRefGoogle Scholar
  23. 16.
    A. Tramontano, K. D. Janda, and R. A. Lerner, Catalytic antibodies, Science 234:1566 (1986).PubMedCrossRefGoogle Scholar
  24. S. J. Pollack, J. W. Jacobs, and P. G. Schultz, Selective chemical catalysis by an antibody, Science 234:1570 (1986).PubMedCrossRefGoogle Scholar
  25. A. Tramontano, A. A. Ammann, and R. A. Lerner, Antibody catalysis approaching the activity of enzymes, J. Am. Chem. Soc. 110:2282 (1988).CrossRefGoogle Scholar
  26. K. D. Janda, S. J. Benkovic, and R. A. Lerner, Catalytic antibodies with lipase activity and R or S substrate selectivity, Science 244:437 (1989).PubMedCrossRefGoogle Scholar
  27. 17.
    K. D. Janda, D. Schloeder, S. J. Benkovic, and R. A. Lerner, Induction of an antibody that catalyzes the hydrolysis of an amide bond, Science 241:1188 (1988)PubMedCrossRefGoogle Scholar
  28. B. L. Iverson, and R. A. Lerner, Sequence-specific peptide cleavage catalyzed by an antibody, Science. 243:1184 (1989).PubMedCrossRefGoogle Scholar
  29. S. Paul, D. J. Volle, C. M. Beach, D. J. Johnson, M. J. Powell, R. J. Massey, Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody, Science. 244:1158 (1989).PubMedCrossRefGoogle Scholar
  30. 18.
    S. J. Benkovic, A. D. Napper, and R. A. Lerner, Catalysis of a stereospecific bimolecular amide synthesis by an antibody, Proc. Natl. Acad. Sci. USA 85:5355 (1988).PubMedCrossRefGoogle Scholar
  31. 19.
    A. Balan, B. P. Doctor, B. S. Green, M. Torten, and H. Ziffer, Antibody combining sites as templates for selective organic chemical reactions, J. Chem. Soc., Chem. Commun. 106 (1988).Google Scholar
  32. 20.
    A. G. Cochran, R. Sugasawara, and P. G. Schultz, Photosensitized cleavage of a thymine dimer by an antibody, J. Am. Chem. Soc. 110:7888 (1988).CrossRefGoogle Scholar
  33. 21.
    K. M. Shokat, C.J. Leumann, R. Sugasawara, and P. G. Schultz, An antibody-mediated redox reaction, Angew. Chem. Int. Ed. Engl. 27:1172 (1988).CrossRefGoogle Scholar
  34. N. Janjic and A. Tramontano, Antibody-catalyzed redox reaction, J. Am. Chem. Soc. 111:9109 (1989).CrossRefGoogle Scholar
  35. 22.
    K. M. Shokat, C. J. Leumann, R. Sugasawara, and P. G. Schultz, A new strategy for the generation of catalytic antibodies, Nature (London) 338:269 (1989).CrossRefGoogle Scholar
  36. 23.
    W. D. Huse, L. Sastry, S. A. Iverson, A. S. Kang, M. Alting-Mees, D. R. Burton, S. J. Benkovic, and R. A. Lerner, Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda, Science 246:1275 (1989).PubMedCrossRefGoogle Scholar
  37. 24.
    S. J. Pollack, G. R. Nakayama, and P. G. Schultz, Introduction of nucleophiles and spectroscopic probes into antibody combining sites, Science 242:1038 (1988).PubMedCrossRefGoogle Scholar
  38. 25.
    A. Skerra and A. Plückthun, Assembly of a functional immunoglobulin Fv fragment in Escherichia coli, Science 240:1038 (1988).PubMedCrossRefGoogle Scholar
  39. M. Better, C. P. Chang, R. R. Robinson, and A. H. Horwitz, Escherichia coli secretion of an active chimeric antibody fragment, Science 240:1041 (1988).PubMedCrossRefGoogle Scholar
  40. 26.
    A. H. Horwitz, C. P. Chang, M. Better, K. E. Hellstrom, and R. R. Robinson, Secretion of functional antibody and Fab fragment from yeast cells, Proc. Natl. Acad. Sci. USA 85:8678 (1988).PubMedCrossRefGoogle Scholar
  41. J. R. Carlson, A new means of inducibly inactivating a cellular protein, Mol. Cell. Biol. 8:2638 (1988).PubMedGoogle Scholar
  42. 27.
    S. Roberts, J. C. Cheetham, and A. R. Rees, Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering, Nature (London) 328:731 (1987).CrossRefGoogle Scholar
  43. E. Baldwin, and P. G. Schultz, Generation of a catalytic antibody by site-directed mutagenesis, Science 245:1104 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Donald Hilvert
    • 1
  1. 1.Departments of Chemistry and Molecular BiologyResearch Institute of Scripps ClinicLa JollaUSA

Personalised recommendations