# Effective Potentials for Intermediate-Energy Electron Scattering: Testing Theoretical Models

## Abstract

Electron scattering by molecules is important from a fundamental point of view as well as for many applications to practical concerns. An electron is the most elementary possible probe of a target. An electron scattering experiment can yield both structural and spectral information. From the chemist’s point of view the spectral information obtainable this way is often invaluable because the selection rules of photon spectroscopy are inoperative. In particular, at impact energies up to about 100 eV, many optically forbidden transitions appear very strongly in electron impact spectroscopy.^{1,2} The energy range from 10–100 eV is thus a very important one for chemistry, and it is often called the intermediate energy range for electron scattering.^{3} Data on electron scattering cross sections at energies below 100 eV are also required for understanding electron mobilities, discharges, flames, radiation chemistry and radiation biology, electron-impact laser initiation, magnetohydrodynamic power generators and other devices containing plasmas, the atmosphere of the planets (especially the upper atmosphere of the earth), the interstellar medium, and stars (including the sun).^{4,5}

## Keywords

Elastic Scattering Differential Cross Section Effective Potential Electron Scattering Exchange Potential## Preview

Unable to display preview. Download preview PDF.

## References

- 1.E. N. Lassettre, Inelastic scattering of high-energy electrons by atmospheric gases, Can. J. Phys. 47: 1733 (1969).Google Scholar
- 2.S. Trajmar, J. K. Rice and A. Kuppermann, Electron-impact spectroscopy, Adv. Chem. Phys. 18: 15 (1970);Google Scholar
- S. Trajmar, Electron impact spectroscopy, Accounts Chem. Research 13: 14 (1980).Google Scholar
- 3.D. G. Truhlar, Electron scattering, in: “Semiempirical Methods of Electronic Structure Calculation, Part B: Applications,” G. A. Segal, ed., Plenum Press, New York (1977), p. 247.Google Scholar
- 4.M. A. Biondi, Atomic processes in planetary atmospheres, in: “Electron-Molecule Scattering,” S. C. Brown, ed., John Wiley and Sons, New York (1979), p. 57; A. V. Phelps, Applications and needs,
*ibid*.,p. 81.Google Scholar - 5.N. F. Lane, The theory of electron-molecule collisions, Rev. Mod. Phys. 52: 29 (1980).Google Scholar
- 5.R. A. Bonham and M. Fink, “High Energy Electron Scattering,” Van Nostrand Reinhold, New York (1974);Google Scholar
- M. Fink, P. G. Moore and D. Gregory, Precise determination of differential electron scattering cross sections. I. The apparatus and the N2 results, J. Chem. Phys. 71:5227 (1979). See also the preceeding chapter in the present volume.Google Scholar
- 7.P. Politzer and K. C. Daiker, Models for chemical reactivity, in: “The Force Concept in Chemistry,” B. M. Deb, ed., Van Nostrand Reinhold, New York, in press.Google Scholar
- 8.F. H. M. Faisal, Electron-molecule interactions. I. Single-centre wave functions and potentials, J. Phys. B 3: 636 (1970).Google Scholar
- 9.F. A. Gianturco, A new version of a program for calculating the static interaction potential between an electron and a diatomic molecule, Computer Phys. Commun. 11: 237 (1976).Google Scholar
- 10.M. A. Morrison, ALAM, a program for the calculation and expansion of molecular charge densities, Computer Phys. Commun., in press; L. A. Collins, D. W. Norcross and G. B. Schmid, VLAM, a program for computing the electron-molecule static interaction potential from a Legendre expansion of the molecular charge density, Computer Phys. Commun., in press.Google Scholar
- 11.P. G. Burke, N. Chandra and F. A. Gianturco, Electron-molecule interactions. IV. Scattering by polyatomic molecules, J. Phys. B 5: 2212 (1972);Google Scholar
- F. A. Gianturco and D. G. Thompson, The scattering of slow electrons by polyatomic molecules. A model study for CH,4, H2O and H2S, J. Phys. B 13: 613 (1980).Google Scholar
- 12.D. G. Truhlar, F. A. Van-Catledge and T. H. Dunning, Jr.,
*Ab initio*and semiempirical calculations of the static potential for electron scattering of the nitrogen molecule, J. Chem. Phys. 57:4788 (1972), 69: 2941 (E) (1978).Google Scholar - 13.J. A. Pople and D. L. Beveridge, “Approximate Molecular Orbital Theory,” McGraw-Hill, New York (1970).Google Scholar
- 14.P. E. Cade, K. D. Sales and A. C. Wahl, Electronic structure of diatomic molecules. III. A Hartree-Fock wave function and energy quantities for N2(X1Eg+) and N2+(X2Eg+,A211u,B2Eu+) molecular ions, J. Chem. Phys. 44: 1973 (1966).Google Scholar
- 15.K. Onda and D. G. Truhlar, Close coupling calculations with an INDOX/ls static potential, semiclassical exchange and a semi-empirical polarization potential for electron-0O2 elastic scattering and rotational excitation, J. Phys. B 12: 283 (1979).Google Scholar
- 16.K. Onda and D. G. Truhlar, Electron-molecule scattering at intermediate energy. Centrifugal-dominant channel decoupling and the INDOX polarized SCF model applied to N2 at 50 eV, J. Chem. Phys. 71: 5097 (1979).Google Scholar
- 17.R. C. Sahni and B. C. Sawhney, Quantum mechanical treatment of molecules. I. Calculations of the potential energy curves and molecular constants of the ground and ionized states of N2, Int. J. Quantum Chem. 1: 251 (1967).Google Scholar
- 18.D. G. Truhlar, Test of Massey’s method for calculating the static potential for electron scattering by N2, Chem. Phys. Lett 15: 486 (1972).Google Scholar
- 19.D. G. Truhlar and F.A. Van-Catledge, Tests of INDO/ls and INDOXI/ls methods for the calculation of the static potential for electron scattering by CO, J. Chem. Phys. 65:553 (1976), 69: 2942 (E) (1978).Google Scholar
- 20.M. A. Morrison and L. A. Collins, Exchange in low-energy electron-molecule scattering: Free-electron-gas model exchange potentials and applications to e-H2 and e-N2 collisions, Phys. Rev. A 17: 918 (1978).Google Scholar
- 21.J. R. Rumble and D. G. Truhlar, Low-energy electron-molecule scattering: Comparison of coupled channel treatments of e-N2 scattering at 13.6 eV using various approximations to the static and exchange potentials and an approximate polarization potential, J. Chem. Phys. 70:4101 (1979), 72: 3441 (E) (1980).Google Scholar
- 22.J. R. Rumble, Jr. and D. G. Truhlar, Comparison of local exchange potentials for electron-N2 scattering, J. Chem. Phys. 72: 5223 (1980).Google Scholar
- 23.J. C. Slater, A simplification of the Hartree-Fock method, Phys. Rev. 81: 385 (1951).Google Scholar
- 24.R. Gaspar, On an approximation to the Hartree-Fock potential by a universal potential function, Acta Phys. 3: 263 (1954).Google Scholar
- 25.W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140: A1133 (1965).Google Scholar
- 26.J. C. Slater, Statistical exchange-correlation in the self-consistent field, Advan. Quantum Chem. 6: 1 (1972).Google Scholar
- 27.S. Hara, The scattering of slow electrons by hydrogen molecules, J. Phys. Soc. Japan 22: 710 (1967).Google Scholar
- 28.M. E. Riley and D. G. Truhlar, Approximations for the exchange potential in electron scattering, J. Chem. Phys. 63: 2182 (1975).Google Scholar
- 29.M. H. Mittleman and K. M. Watson, Effect of the Pauli principle on the scattering of high-energy electrons by atoms, Ann. Phys. (NY) 10: 268 (1960).Google Scholar
- 30.M. E. Riley and D. G. Truhlar, Effects of the Pauli principle on electron scattering by open-shell targets, J. Chem. Phys. 65: 792 (1976).Google Scholar
- 31.P. Baille and J. W. Darewych, A note on local exchange approximations in electronic collisions, J. Chem. Phys. 67: 3399 (1977).Google Scholar
- 32.J. B. Furness and I. E. McCarthy, Semiphenomenological optical model for electron scattering in atoms, J. Phys. B 6: 2280 (1973).Google Scholar
- 33.R. Vanderpoorten, A local optical potential study of elastic electron-atom scattering, J. Phys. B 8: 926 (1975).Google Scholar
- 34.R. A. Bonham, Inelastic scattering from atoms at medium energies. I. Bound states, J. Chem. Phys. 36: 3260 (1962).Google Scholar
- 35.V. I. Ochkur, Zh. Eksperim. i Theor. Fiz. 45:734 (1963) [English transi.: The Born-Oppenheimer method in the theory of atomic collisions, Soviet Phys. J.E.T.P. 18:503 (1964)].Google Scholar
- 36.W. M. Duxler, R. T. Poe and R. W. LaBahn, Study of the polarized-orbital method and its application to the scattering of electrons by helium, Phys. Rev. A 4: 1935 (1971).Google Scholar
- 37.M. S. Pindzola and H. P. Kelly, Low-energy elastic scattering of electrons by neutral argon atom, Phys. Rev. A 9: 323 (1974).Google Scholar
- 38.B. H. Bransden, M. R. C. McDowell, C. J. Noble and T. Scott, Equivalent exchange potentials in electron scattering, J. Phys. B 9: 1301 (1976).Google Scholar
- 39.D. G. Truhlar and N. A. Mullaney, Semiclassical exchange approximation for inelastic electron scattering, J. Chem. Phys. 68: 1574 (1978).Google Scholar
- 40.B. H. Bransden, M. Crocker, I. E. McCarthy, M. R. C. McDowell and L. A. Morgan, Effective exchange potentials for inelastic scattering, J. Phys. B 11: 3411 (1978);Google Scholar
- L. A. Morgan and M. R. C. McDowell, Equivalent exchange potentials, J. Phys. B 12: L739 (1979).Google Scholar
- 41.K. Omidvar, Electron impact 2s and 2p excitations of atomic hydrogen, NASA Goodard Space Flight Center, technical note G-419, 1963 (unpublished).Google Scholar
- 42.R. J. W. Henry and N. F. Lane, Polarization and exchange effects in low-energy electron-H2 scattering, Phys. Rev. 183: 221 (1969).Google Scholar
- 43.B. I. Schneider, R-matrix theory for electron-molecule collisions using analytic basis set expansions. II. Electron-H2 scattering in the static-exchange model, Phys. Rev. A 11: 1957 (1975).Google Scholar
- 44.L. A. Collins, W. D. Robb and M. A. Morrison, Electron scattering by diatomic molecules: Iterative static-exchange techniques, Phys. Rev. A 21: 488 (1980).Google Scholar
- 45.D. G. Truhlar and M. A. Brandt, Close-coupling calculations of differential cross sections for elastic scattering and rotational excitation of hydrogen molecules by electrons at 10 eV and 40 eV, J. Chem. Phys. 65: 3092 (1976).Google Scholar
- 46.P. Baille and J. W. Darewych, Comparison of local exchange potentials for electron scattering by hydrogen molecules, J. Phys. B 10: L615 (1977).Google Scholar
- 47.K. Onda and D. G. Truhlar, Comparison of local-exchange approximations for intermediate-energy electron-molecule differential cross sections, J. Chem. Phys. 72: 1415 (1980).Google Scholar
- 48.K. Onda and D. G. Truhlar, State-to-state cross sections for elastic and inelastic electron scattering by N2 at 20–35 eV, including resonant enhancement of vibrational excitation, J. Chem. Phys. 72: 5249 (1980).Google Scholar
- 49.A. W. Yau, R. P. McEachran and A. D. Stauffer, Electron scattering from noble gases, J. Phys. B 11: 1 (1978).Google Scholar
- 50.M. A. Morrison and L. A. Collins, Exchange in low-energy electron-molecule scattering: Orthogonalization and freeelectron-gas approximations for collisions with polar and non-polar molecules, Phys. Rev. A, to be published.Google Scholar
- 51.D. G. Truhlar and J. Abdallah, Jr., New methods for calculating scattering cross sections for rearrangement collisions, Phys. Rev. A 9: 297 (1974);Google Scholar
- S. P. Rountree and G. Parnell, Modified variational method for scattering, Phys. Rev. Lett. 39: 853 (1977);Google Scholar
- L. A. Collins and W. D. Robb, A multichannel modified variational approach to low-energy electron-molecule collisions: Static-exchange approximation, J. Phys. B 13: 1637 (1980).Google Scholar
- 52.H. Feshbach, Unified theory of nuclear reactions, Ann. Phys. (NY) 5: 357 (1958);Google Scholar
- H. Feshbach, A unified theory of nuclear reactions. II, Ann. Phys. (NY) 19: 287 (1962).Google Scholar
- 53.A. L. Fetter and K. M. Watson, The optical model, Advan. Theor. Phys. 1: 115 (1965);Google Scholar
- M. H. Mittleman, Elastic scattering of electrons by atoms, Advan. Theor. Phys. 1: 283 (1965).Google Scholar
- 54.C. J. Joachain, “Quantum Collision Theory,” North-Holland, Amsterdam (1975), chapter 20.Google Scholar
- 55.B. H. Bransden and M. R. C. McDowell, Electron scattering by atoms at intermediate energies. I. Theoretical models, Phys. Rep. 30: 207 (1977);Google Scholar
- B. H. Bransden and M. R. McDowell, Electron scattering by atoms at intermediate energies. II. Theoretical and experimental data for light atoms, Phys. Rep. 31: 3095 (1978).Google Scholar
- 56.C. J. Joachain, Optical model theory of elastic electron-and positron-atom scattering at intermediate energies, Comments Atomic Molec. Phys. 6: 37 (1977);Google Scholar
- F. W. Byron, Jr. and C. J. Joachain, Elastic scattering of electrons and positrons by complex atoms at intermediate energy, Phys. Rev. A 15: 128 (1977);Google Scholar
- C. J. Joachian, R. Vanderpoorten, K. H. Winters and F. W. Byron, Jr., Optical model theory of elastic electron-and positron-argon scattering at intermediate energies, J. Phys. B 10: 227 (1977);Google Scholar
- R. Vanderpoorten, A local optical potential study of elastic e-Li scattering, J. Phys. B 9: L535 (1976);Google Scholar
- C. J. Joachain and K. H. Winters, An optical model approach to the elastic scattering of electrons by H(2s), J. Phys. B 13: 1451 (1980).Google Scholar
- 57.I. E. McCarthy, C. J. Noble, B. A. Phillips and A. D. Turnbull, Optical model for electron scattering by inert gases, Phys. Rev. A 15: 2173 (1977).Google Scholar
- 58.P. J. O. Teubner, S. J. Buckman and C. J. Noble, Differential cross sections for the elastic scattering of intermediate-energy electrons from sodium, J. Phys. B 11: 2345 (1978).Google Scholar
- 59.D. H. Madison, Sensitivity of differential cross sections and angular correlation parameters to scattering parameters, J. Phys. B 12: 3399 (1979);Google Scholar
- D. H. Madison, Effect of optical potentials on angular correlation parameters, in: “Coherence and Correlation in Atomic Collisions,” H. Kleinpoppen and J. F. Williams, ed., Plenum, New York (1980), p. 167;Google Scholar
- M. Stewart and D. H. Madison, Effect of polarization and absorption on differential cross sections and angular correlation parameters, to be published.Google Scholar
- 60.M. S. Pindzola and H. P. Kelly, Electron excitation of the 2s and 2p states of hydrogen from threshold to 50 eV, Phys. Rev. A 11: 221 (1975).Google Scholar
- 61.P. W. Coulter and W. R. Garrett, Electron-hydrogen atom scattering by complex-optical-potential methods, Phys. Rev. A 18: 1902 (1978);Google Scholar
- P. W. Coulter, Calculation of inelastic cross sections from microscopic-optical-model potentials, Phys. Rev. A 18: 1908 (1978).Google Scholar
- 62.T. Scott and H. S. Taylor, Elastic electron-helium scattering. I. A theoretical approach, J. Phys. B 12, 3367 (1979);Google Scholar
- T. Scott and H. S. Taylor, Elastic electron-helium scattering. II. Application to many-body theory, J. Phys. B 12: 3385 (1979);Google Scholar
- B. Schneider, H. S. Taylor and R. Paris, Many-body theory of the elastic scattering of electrons from atoms and molecules, Phys. Rev. A 1: 855 (1970).Google Scholar
- 63.D. G. Truhlar and K. Onda, Matrix effective potential for electronic response in electron scattering with application to He at 30–400 eV impact energy, Phys. Lett. 76A: 119 (1980).Google Scholar
- 64.K. Onda and D. G. Truhlar, New approaches to the quantum mechanical treatment of charge polarization in intermediate-energy electron scattering, Phys. Rev. A 22: 86 (1980).Google Scholar
- 65.D. G. Truhlar, D. A. Dixon, R. A. Eades, F. A. Van-Catledge and K. Onda, Polarization potentials for electron scattering, in: “Electron-Molecule and Photon-Molecule Collisions”, T. N. Resigno, V. McKoy and B. I. Schneider, eds., Plenum, New York (1979), p. 161.Google Scholar
- 66.D. G. Truhlar, D. A. Dixon and R. A. Fades,
*Ab initio*SCF polarizabilities and electron-molecule adiabatic polarization potentials. I. H2, J. Phys. B 12: 1913 (1979).Google Scholar - 67.D. A. Dixon, R. A. Eades and D. G. Truhlar,
*Ab initio*SCF polarizabilities and electron-molecule adiabatic polarization potentials. II. Lie. J. Phys. B 12: 2741 (1979).Google Scholar - 68.R. A. Eades, D. G. Truhlar and D. A. Dixon,
*Ab initio*SCF polarizabilities and electron-molecule adiabatic polarization potentials. III. N2. Phys. Rev. A 20: 867 (1979).Google Scholar - 69.D. G. Truhlar, K. Onda, R. A. Eades and D. A. Dixon, Effective potential approach to electron-molecule scattering theory, Int. J. Quantum Chem. Symp. 13: 601 (1979).Google Scholar
- 70.C. H. Douglas, Jr., D. A. Weil, P. A. Charlier, R. A. Eades, D. G. Truhlar and D. A. Dixon, following chapter in the present volume.Google Scholar
- 71.M. H. Mittleman and K. M. Watson, Scattering of charged particles by neutral atoms, Phys. Rev. 113: 198 (1959);Google Scholar
- M. H. Mittleman, Scattering of electrons by atomic hydrogen. Ann. Phys. (NY) 14: 94 (1961).Google Scholar
- 72.C. J. Kleinman, Y. Hahn and L. Spruch, Dominant nonadiabatic contribution to the long-range electron-atom interaction, Phys. Rev. 165: 53 (1968).Google Scholar
- 73.R. J. Drachman and A. Temkin, Polarized orbital approximations, in: “Case Studies in Atomic Collision Physics II”, E. W. McDaniel and M. R. C. McDowell, eds., North-Holland, Amsterdam (1972), p. 399.Google Scholar
- 74.N. F. Lane and R. J. W. Henry, Polarization potential in low-energy electron-H2 scattering, Phys. Rev. 173: 183 (1978).Google Scholar
- 75.S. Hara, The dipole-polarization potential in H2-electron scattering, J. Phys. Soc. Japan 27: 1262 (1969).Google Scholar
- 76.D. G. Truhlar and F. A. Van-Catledge, Adiabatic polarization potentials for electron scattering by N2 and CO, J. Chem. Phys. 69: 3575 (1978).Google Scholar
- 77.K. Onda and D. G. Truhlar, SCF treatment of charge polarization effects in intermediate-energy electron scattering calculations with applications to N2, J. Chem. Phys. 70: 1681 (1979).Google Scholar
- 78.K. Onda and D. G. Truhlar, Model potentials for electron scattering: Converged close coupling calculations for the differential cross section for e N2 at 30–50 eV, J. Chem. Phys. 69: 1361 (1978).Google Scholar
- 79.S. K. Srivastava, A. Chutjian and S. Trajmar, Absolute elastic differential electron scattering cross sections in the intermediate energy region. II. N2, J. Chem. Phys. 64: 1340 (1976).Google Scholar
- 80.T. W. Shyn and G. R. Carignan, Angular distribution of electrons elastically scattered from gases: 1.5 eV-400 eV on N2. II, Phys. Rev. A 22: 923 (1980).Google Scholar
- 81.K. Onda and D. G. Truhlar, State-to-state cross sections for electron impact on N2. Close coupling and polarized Born calculations for rotational and vibrational excitation and pure elastic scattering at nonresonant energies, J. Chem. Phys. 71: 5107 (1979).Google Scholar
- 82.K. Onda and D. G. Truhlar, Quantum mechanical study of elastic scattering and rotational excitation of CO by electrons, J. Chem. Phys. 73: 2688 (1980).Google Scholar
- 83.D. Thirumalai, K. Onda and D. G. Truhlar, Elastic scattering and rotational excitation of a polyatomic molecule by electron impact: Acetylene, J. Chem. Phys. 74, in press.Google Scholar
- 84.D. Thirumalai, K. Onda and D. G. Truhlar, Excitation of the asymmetric stretch made of CO2 by electron impact, J. Phys. B 13: L619 (1980);Google Scholar
- D. Thirumalai, K. Onda and D. G. Truhlar, unpublished.Google Scholar
- 85.D. R. Bates and H. S. W. Massey, The negative ions of atomic and molecular oxygen, Phil. Trans. Soc. Lond. A 239: 269 (1943).Google Scholar
- 86.V. M. Martin, M. J. Seaton and J. B. G. Wallace, On the use of the adiabatic theory in electron-atom collision calculations, Proc. Roy. Soc. 72: 701 (1958);Google Scholar
- L. Castillejo, I. C. Percival and M. J. Seaton, On the theory of elastic collisions between electrons and hydrogen atoms, Proc. Roy. Soc. Lond., Ser. A 254: 259 (1960).Google Scholar
- 87.P. G. Burke, Theory of low-energy electron-molecule collisions, Advan. At. Molec. Phys. 15: 471 (1979).Google Scholar
- 88.E. L. Brieg and C. C. Lin, Vibrational excitation of diatomic molecules by electron impact, J. Chem. Phys. 43: 3839 (1965);Google Scholar
- R. J. W. Henry, Low-energy electron-diatomic molecule scattering, Int. J. Quantum Chem. Symp. 13: 633 (1979).Google Scholar
- 89.D. G. Truhlar and J. K. Rice, Electron-scattering by H2 with and without vibrational excitation. I. Quantum mechanical theory, J. Chem. Phys. 52:4480 (1970), 55: 2005 (E) (1971);Google Scholar
- D. G. Truhlar, J. K. Rice, S. Trajmar and D. C. Cartwright, The importance of polarization for electron scattering in the intermediate-energy region, Chem. Phys. Lett. 9: 299 (1971).Google Scholar
- 90.K. Onda, Electronic polarization of atoms by charged-particle impact, Institute for Space and Aeronautical Science Report No. 471, University of Tokyo, 1971 (unpublished).Google Scholar
- 91.K. S. Pitzer, “Quantum Chemistry”, Prentice-Hall, Englewood Cliffs, NJ (1953), appendix 20.Google Scholar
- 92.M. J. Seaton and L. Steenman-Clark, Effective potentials for electron-atom scattering below inelastic thresholds, I. Asymptotic forms, J. Phys. B 10: 2639 (1977).Google Scholar
- 93.R. J. Drachman, Asymptotic effective potentials for electron-hydrogen scattering, J. Phys. B 12: L699 (1979).Google Scholar
- 94.R. K. Nesbet,,Variational calculations of accurate e-He cross sections below 19 eV, Phys. Rev. A 20: 58 (1979).Google Scholar
- 95.D. Andrick and H. Bitsch, Experimental investigation and phase shift analysis of low-energy electron-helium scattering, J. Phys. B 8: 393 (1975);Google Scholar
- J. F. Williams, A phase shift analysis of experimental angular distributions of electrons elastically scattered from He, Ne and Ar over the range 0.5 to 20 eV, J. Phys. B 12: 265 (1979).Google Scholar
- 96.D. F. Register, S. Trajmar and S. K. Srivastava, Absolute elastic differential electron scattering cross sections for He: A proposed calibration standard from 5 to 200 eV, Phys. Rev. A 21: 1134 (1980).Google Scholar
- 97.P. G. Burke and K. Smith, The low-energy scattering of electrons and positrons by hydrogen atoms, Rev. Mod. Phys. 34: 458 (1962).Google Scholar
- 98.G. F. Drukarev, “The Theory of Electron-Atom Collisions”, Academic Press, London (1965).Google Scholar
- 99.P. G. Burke, Low-energy electron-atom scattering, in: “Atomic Collision Processes”, S. Geltman, K. T. Mahanthappa and W. E. Brittin, eds., Gordon and Breach, New York (1969), p. 1.Google Scholar
- 100.K. Smith, “The Calculation of Atomic Collision Processes”, Wiley-Interscience, New York (1971).Google Scholar
- 101.S. Geltman, Applications of pseudo-state expansions, Phys. Electron. At. Collisions, Invited Pap. Prog. Rep. Int. Conf. 7th, 216 (1971).Google Scholar
- 102.D. G. Truhlar, J. Abdallah, Jr. and R. L. Smith, Algebraic variational methods in scattering theory, Advan. Chem. Phys. 25: 211 (1974).Google Scholar
- 103.R. K. Nesbet, Low-energy electron scattering by complex atoms: Theory and calculations, Advan. At. Mol. Phys. 13: 315 (1977).Google Scholar
- 104.S. Yoshida, The inelastic scattering of nucleons by the surface interaction, Proc. Phys. Soc. Lond. 69: 668 (1956).Google Scholar
- 105.M. H. Mittleman and R. Pu, Optical potential for closely coupled states, Phys. Rev. 126: 370 (1962).Google Scholar
- 106.H. C. Volkin, Generalized potentials for inelastic scattering, Phys. Rev. 155: 1177 (1967).Google Scholar
- 107.G. Wolkin, Computational approach to the construction of the optical potential, J. Chem. Phys. 56: 2591 (1972).Google Scholar
- 108.I. E. McCarthy and M. R. C. McDowell, Total cross sections in the atomic coupled-channels optical model, J. Phys. B 12: 3775 (1979).Google Scholar
- 109.F. J. deHeer and R. J. H. Jansen, Total cross sections for electron scattering by He, J. Phys. B 10: 3741 (1977).Google Scholar
- 110.B. I. Schneider, Pseudostates and low-energy electron-molecule collisions: Application to H2 and N2, Chem. Phys. Lett. 51: 578 (1977).Google Scholar
- 111.A. Klonover and U. Kaldor,
*Ab initio*calculations of electron-molecule scattering cross sections including polarization, Chem. Phys. Lett. 51: 321 (1977);Google Scholar - A. Klonover and U. Kaldor,
*Ab initio*electron-molecule scattering theory including polarization: Elastic scattering and rotational excitation of H2, J. Phys. B 11: 1623 (1978);Google Scholar - A. Klonover and U. Kaldor,
*Ab initio*electron-molecule scattering theory including polarization: Vibrational and vibrational-rotational excitation of H2, J. Phys. B 12: 323 (1979).Google Scholar - 112.D. G. Truhlar, S. Trajmar and W. Williams, Electron scattering by molecules with and without vibrational excitation. IV. Elastic scattering and excitation of the first vibrational level of N2 and CO at 20 eV, J. Chem. Phys. 57: 3250 (1972).Google Scholar
- 113.M. A. Brandt and D. G. Truhlar, Importance of long-range forces and short-range forces in electron scattering: Elastic scattering by N2 at 10 and 30 eV, Chem. Phys. Lett. 23: 48 (1973).Google Scholar
- 114.S. Trajmar, D. G. Truhlar and J. K. Rice, Electron scattering by H2 with and without vibrational excitation. II. Experimental and theoretical study of elastic scattering. J. Chem. Phys. 52:4502 (1970), 55: 2004 (E) (1971).Google Scholar
- 115.S. Trajmar, D. G. Truhlar, J. K. Rice and A. Kuppermann, Electron scattering by H2 with and without vibrational excitation. III. Experimental and theoretical study of inelastic scattering, J. Chem. Phys. 52: 4516 (1970).Google Scholar
- 116.D. G. Truhlar, Electron scattering with and without vibrational excitation. VIII. Comment on a theory of small-energytransfer collisions dominated by long-range forces, Phys. Rev. A 7: 2217 (1973).Google Scholar
- 117.D. G. Truhlar and J. K. Rice, Elastic scattering of electrons by hydrogen molecules at intermediate energies, Phys. Lett. A 47: 372 (1974).Google Scholar
- 118.N. F. Lane and R. J. W. Henry, Polarization potential in low-energy electron-H2 scattering, Phys. Rev. 173: 183 (1968).Google Scholar
- 119.M. K. Srivastava, A. N. Tripathi and M. Lal, Exchange effects in the independent-atom model of electron-molecule scattering, Phys. Rev. A 18: 2377 (1978).Google Scholar
- 120.J. L. Dehmer and D. Dill, The continuum multiple-scattering approach to electron-molecule scattering and molecular photo-ionization, in: “Electron-Molecule and Photon-Molecule Collisions,” T. N. Rescigno, V. McKoy and B. I. Schneider, eds., Plenum, New York (1979), p. 225.Google Scholar
- 121.A. M. Arthurs and A. Dalgarno, The theory of scattering by a rigid rotator, Proc. Roy. Soc. Lond., Ser. A 256: 540 (1960).Google Scholar
- 122.F. Linder and H. Schmidt, Rotational and vibrational excitation of H2 by slow electron impact, Z. Naturforsch, Teil A 26: 1603 (1969).Google Scholar
- 123.S. K. Srivastava, R. I. Hall, S. Trajmar and A. Chutjian, Pure rotational excitation of H2 at electron impact energies of 3 to 100 eV, Phys. Rev. A 12: 1399 (1975).Google Scholar
- 124.M. A. Brandt, D. G. Truhlar and F. A. Van-Catledge, Electron scattering by nitrogen molecules in the energy range 30–75 eV: Theory and application to elastic scattering, J. Chem. Phys. 64: 4957 (1976).Google Scholar
- 125.D. G. Truhlar, M. A. Brandt, S. K. Srivastava, S. Trajmar and A. Chutjian, Quantum mechanical and crossed-beam study of vibrational excitation of N2 by electron impact at 30–75 eV, J. Chem. Phys. 66: 655 (1977).Google Scholar
- 126.D. G. Truhlar, M. A. Brandt, A. Chutjian, S. K. Srivastava and S. Trajmar, Electron scattering by N2 at 5 and 10 eV: Rotational-vibrational close coupling calculations and crossed-beam studies of vibrational excitation, J. Chem. Phys. 65: 2962 (1976).Google Scholar
- 127.J. R. Rumble, Jr. and D. G. Truhlar, Investigation of the assumptions of the multiple-scattering method for electron-molecule scattering cross sections, J. Chem. Phys. 72: 3206 (1930).Google Scholar
- 128.J. R. Rumble, Jr., D. G. Truhlar and M. A. Morrison, unpublished calculations of vibrational excitation cross sections for N2.Google Scholar
- 129.N. Chandra and A. Temkin, Hybrid theory calculation of electron-N2 scattering at 5 and 10 eV, J. Chem. Phys. 65: 4537 (1976).Google Scholar
- 130.Z. Pavlovic, M. J. W. Boness, A. Herzenberg and G. J. Schulz, Vibrational excitation in N2 by electron impact in the 15–35 eV region, Phys. Rev. A 6: 676 (1972).Google Scholar
- 131.J. L. Dehmer, J. Siegel, J. Welch and D. Dill, Origin of enhanced vibrational excitation in N2 by electron impact in the 15–35 eV region, Phys. Rev. A 21: 101 (1980).Google Scholar
- 132.H. Tanaka, S. K. Srivastava and A. Chutjian, Absolute elastic differential electron scattering cross sections in the intermediate energy region. IV. CO, J. Chem. Phys. 69: 5329 (1978).Google Scholar
- 133.S. K. Srivastava, A. Chutjian and S. Trajmar, Absolute elastic differential electron scattering cross sections in the intermediate energy region. II. N2, J. Chem. Phys. 64: 1340 (1976).Google Scholar
- 134.W. R. Newell, D. F. C. Brewer and A. C. H. Smith, Elastic differential electron scattering from the polyatomic molecules CH4, C2H2 and C2H4, Abstr. Pap. Int. Conf. Phys. Electron. At. Collisions 11th, 308 (1979).Google Scholar
- 135.D. F. Register, H. Nishimura and S. Trajmar, Elastic scattering and vibrational excitation of CO2 by 4, 10, 20 and 50 eV electrons, J. Phys. B 13: 1651 (1980).Google Scholar
- 136.D. G. Truhlar, W. Williams and S. Trajmar, Electron scattering by molecules with and without vibrational excitation. VI. Elastic scattering by CO at 6–80 eV, J. Chem. Phys. 57: 4307 (1972).Google Scholar
- 137.M. A. Morrison, N. F. Lane and L. A. Collins, Low-energy electron-molecule scattering: Application of coupled-channel theory to e-0O2 collisions, Phys. Rev. A 15: 2186 (1977).Google Scholar
- 138.T. W. Shyn, W. E. Sharp and G. R. Carignan, Angular distribution of electrons elastically scattered by CO2, Phys. Rev. A 17: 1855 (1978).Google Scholar
- 139.T. N. Rescigno, C. W. McCurdy, Jr., V. McKoy and C. F. Bender, Low-energy electron-impact excitation of the hydrogen molecule, Phys. Rev. A 13: 216 (1976);Google Scholar
- A. W. Fliflet and V. McKoy, Distorted-wave-approximation cross sections for excitation of the b3Eú and BIEu states of H2 by low-energy electronic impact, Phys. Rev. A 21: 1863 (1980).Google Scholar
- 140.A. W. Fliflet, V. IicKoy and T. Rescigno, Cross sections for excitation of the B311g, C3IIu and 02+ states of N2 by low-energy electron impact in the distorted-wave approximation, J. Phys. B 12: 3281 (1979).Google Scholar
- 141.A. W. Fliflet, V. McKoy and T. N. Rescigno, Dissociation of F2 by electron impact of the lowest 3IIu electronic state, Phys. Rev. A 21: 788 (1980).Google Scholar
- 142.K. F. Black and N. F. Lane, Simultaneous electronic and rotational excitation of H2 by electron impact, Abstr. Pap. Int. Conf. Phys. Electron. At. Collisions 6th, 107 (1969)Google Scholar
- F. Black and N. F. Lane, Resonant excitation of the B’Eu state of H2 by electron impact, Abstr. Pap. Int. Conf. Phys. Electron. At. Collisions 7th, 332 (1971).Google Scholar
- 143.S. Chung and C. C. Lin, Application of the close-coupling method to excitation of electronic states and dissociation of H2 by electron impact, Phys. Rev. A 17: 1874 (1978).Google Scholar
- 144.P. G. Burke and W. D. Robb, The R-matrix theory of atomic processes, Advan. At. Molec. Phys. 11:143 (1975); B. D. Buckley, P. G. Burke and Vo Ky Lan, R-matrix calculations for electron-molecule scattering, Comput. Phys. Commun. 17: 175 (1979).Google Scholar
- 145.J. Abdallah, Jr. and D. G. Truhlar, The use of contracted basis functions in algebraic variational scattering calculations, J. Chem. Phys. 61: 30 (1974).Google Scholar
- 146.J. Callaway, The variational method in atomic scattering, Phys. Rep. 45: 89 (1978).Google Scholar
- 147.M. A. Abdel-Raouf, Tests of the least norm variational principle with upper and lower bounds on s-wave phaseshifts, J. Phys. B 12: 3349 (1979).Google Scholar
- 148.D. K. Watson and V. McKoy, Discrete-basis-function approach to electron-molecule scattering, Phys. Rev. A 20: 1474 (1979);Google Scholar
- R. R. Lucchese and’ V. McKoy, Application of the Schwinger variational principle to electron-ion scattering in the static-exchange approximation, Phys. Rev. A 21: 112 (1980);Google Scholar
- D. K. Watson, R. R. Lucchese, V. McKoy and T. N. Rescigno, Schwinger variational principle for electron-molecule scattering: Application to electron-hydrogen scattering, Phys. Rev. A 21: 738 (1980);Google Scholar
- D. Thírumalai and D. G. Truhlar, Comparison of convergence of the Schwinger, optimized anomaly-free, and optimized minimum norm variational methods for potential scattering, Chem. Phys. Lett. 70:330 (1980) and erratum in press;Google Scholar
- J. Callaway, Comparison of Schwinger and Kohn variational phase shift calculations, Phys. Lett. 77A: 137 (1980);Google Scholar
- N. Maleki and J. Macek, Schwinger’s variational principle for electron-ion scattering, Phys. Rev. A 21: 1403 (1980);Google Scholar
- K. Takatsuka and V. McKoy, The Schwinger variational principle for multichannel scattering, Phys. Rev. Lett. 45: 1396 (1980);Google Scholar
- K. Takatsuka and V. McKoy, A variational scattering theory using a functional of fractional form. II. An L
^{2}approach, to be published.Google Scholar - 149.M. R. H. Rudge, A variational procedure for multichannel scattering, J. Phys. B, to be published.Google Scholar