Skip to main content

Atomic Multipole Expansions of Molecular Charge Densities. Electrostatic Potentials

  • Chapter
Chemical Applications of Atomic and Molecular Electrostatic Potentials

Abstract

The molecular electrostatic potential has been shown to be a very useful tool for understanding the reactivities of molecules with ions or polar molecules1 and the structure and energetics of intermolecular complexes, including hydrogen bonded complexes.2 The electrostatic potential can be obtained as the by-product of a molecular orbital calculation in the form of a large table of numbers.3 A considerable computational advantage would be obtained if this information could be compressed into analytical form, and a large amount of effort has gone into the search for appropriate representations. For instance, Bonaccorsi, Scrocco and Tomasi4 have shown how one can resolve molecular electrostatic potentials into sums of contributions from fragments within the molecule; the fragment contributions are approximately transferable, allowing one to construct the potential for a large molecule without first performing a molecular orbital calculation on that molecule. Kollman5 has also addressed the problem of obtaining the potential without a wave function and has produced a family of point-charge models for which the necessary inputs are experimental bond lengths, bond angles, and dipole moments, atomic electronegativities, and van der Waals radii. These point-charge distributions produce electrostatic potentials at suitable reference points which are in reasonable accord with the potentials obtained from wave functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Scrocco and J. Tomasi, The electrostatic molecular potential as a tool for the interpretation of molecular properties, Top. Curr. Chem. 42: 95 (1973).

    CAS  Google Scholar 

  2. P. Kollman, A general analysis of noncovalent intermolecular interactions, J. Am. Chem. Soc. 99: 4875 (1977).

    Article  CAS  Google Scholar 

  3. For instance, A. C. Wahl and R. H. Land, Evaluation of multicenter integrals by polished brute-force techniques. II. A.curacy, timing, integral values, and general computational considerations, J. Chem. Phys. 50: 4725 (1969).

    Google Scholar 

  4. R. Bonaccorsi, E. Scrocco and J. Tomasi, Group contributions to the electrostatic molecular potential, J. Am. Chem. Soc. 98:4049 (1975); An approximate expression of the electrostatic molecular potential in terms of completely transferable group contributions, J. Am. Chem. Soc. 99: 4546 (1977).

    Article  Google Scholar 

  5. P. A. Kollman, A method of describing the charge distribution in simple molecules, J. Am. Chem. Soc. 100: 2974 (1978).

    Article  CAS  Google Scholar 

  6. For instance, J. H. Jeans, “The Mathematical Theory of Electricity and Magnetism,” 3rd ed., The University Press, Cambridge, UK (1915), p. 224.

    Google Scholar 

  7. A. Julg, On the description of molecules using point charges and electric moments, Top. Curr. Chem. 58: 1 (1975).

    Article  CAS  Google Scholar 

  8. R. F. Stewart, J. Bentley and G. Goodman, Generalized X-ray scattering factors in diatomic molecules, J. Chem. Phys. 63: 3786 (1975).

    Article  CAS  Google Scholar 

  9. R. F. Stewart, One-electron density functions and many-centered finite-multipole expansions, Israel J. Chem. 16:124 (1977); R. F. Stewart, On the mapping of electrostatic properties from Bragg diffraction data, Chem. Phys. Lett. 65: 335 (1979).

    Google Scholar 

  10. J. Bentley and R. F. Stewart, Diatomic generalized X-ray scattering factors: Results from Hartree-Fock electron density functions, J. Chem. Phys. 63: 3794 (1975).

    Article  CAS  Google Scholar 

  11. J. Bentley, Collision-induced atomic dipole moments, J. Chem. Phys. 70: 3125 (1979).

    Article  CAS  Google Scholar 

  12. L. C. Snyder and H.. Basch, “Molecular Wave Functions and Properties,” Wiley, New York (1972).

    Google Scholar 

  13. T. H. Dunning, Jr., R. M. Pitzer and S. Aung, Near Hartree-Fock calculations on the ground state of the water molecule: Energies, ionization potentials, geometry, force constants, and one-electron properties, J. Chem. Phys. 57: 5044 (1972).

    Article  CAS  Google Scholar 

  14. P. E. Cade and W. M. Huo, Electronic structure of diatomic molecules. VI.A. Hartree-Fock wave functions and energy quantities for the ground state of the first-row diatomic hydrides, AH, J. Chem. Phys. 47: 614 (1967).

    Article  CAS  Google Scholar 

  15. R. D. Amos, MCSCF calculations of the properties of hydrogen fluoride, Mol. Phys. 35: 1765 (1978).

    CAS  Google Scholar 

  16. For instance, M. Cohen and A. Dalgarno, Stationary properties of the Hartree-Fock approximation, Proc. Phys. Soc. (London) 77: 740 (1961).

    Google Scholar 

  17. R. F. Stewart, E. R. Davidson and W. T. Simpson, Coherent X-ray scattering for the hydrogen atom in the hydrogen molecule, J. Chem. Phys. 42: 3175 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bentley, J. (1981). Atomic Multipole Expansions of Molecular Charge Densities. Electrostatic Potentials. In: Politzer, P., Truhlar, D.G. (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9634-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9634-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9636-0

  • Online ISBN: 978-1-4757-9634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics