Advertisement

Electrostatic Molecular Potential Contour Maps from Ab-initio Calculations. 1. Biologically Significant Molecules. 2. Mechanism of Cationic Polymerization

  • Joyce J. Kaufman
  • P. C. Hariharan
  • Frank L. Tobin
  • Carlo Petrongolo

Abstract

In the portions of the hypersurface of the interaction energy between two molecules where polarization may be considered inessential to the understanding of the physical phenomenon under investigation, the interaction hypersurface may be well-approximated by electrostatic interactions. This approximation must be carefully controlled since its validity is not always well justified. In certain cases there may be a difference in exchange repulsion in a series of similar but not very closely related molecules approaching a substrate; however, such cases are the exception. The electrostatic potential arising from molecule A is completely defined at every point of the space if one knows the charge distribution (electronic and nuclear) of the molecule.1,2 When the electrostatic approximation is valid, electrostatic potential contour maps indicate vividly the potential field around a molecule as seen by an approaching reagent or a receptor site.

Keywords

Cationic Polymerization Epoxide Ring Cyclic Ether Ring Strain Singlet Potential Energy Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Scrocco and J. Tomasi, The electrostatic molecular potential as a tool for the interpretation of molecular properties, Top. Curr. Chem. 42:97 (1973) and references therein.Google Scholar
  2. 2.
    C. Petrongolo, Quantum chemical study of isolated and interacting molecules with biological activity, Gazz. Chini. Ital. 108:445 (1978) and references therein.Google Scholar
  3. 3.
    E. Scrocco and J. Tomasi, Electronic molecular structure, reactivity and inter-molecular forces: An heuristic interpretation by means of electrostatic molecular potentials, Adv. Quantum Chem. 11: 115 (1978).CrossRefGoogle Scholar
  4. 4.
    A. Martinelli and C. Petrongolo, Ab initio study of the internal rotation and of the electrostatic molecular potential of a model compound of tazolol and comparison with similar compounds, J. Phys. Chem. 84: 105 (1980).CrossRefGoogle Scholar
  5. 5.
    H. J. T. Preston and J. J. Kaufman, Ab initio SCF calculations on pyrrole and pyrazole, Int. J. Quantum Chem. Symp. 7: 207 (1973).CrossRefGoogle Scholar
  6. 6.
    H. J. T. Preston, E. Kerman, J. J. Kaufman and L. C. Cusachs, Comparison for pyrrole and pyrazole of orbital energies and population analyses from ab initio SCF, CNDO/2, extended Mickel and ARCANA calculations, Int. J. Quantum Chem. Symp. 7: 249 (1973).Google Scholar
  7. 7.
    C. Petrongolo, H. J. T. Preston and J. J. Kaufman, Ab initio LCAO-MO-SCF calculations of the electrostatic molecular potential of chlorpromazine and promazine, Int. J. Quantum Chem. 13: 457 (1978).CrossRefGoogle Scholar
  8. 8.
    J. J. Kaufman, Quantum chemical and physicochemical influences on structure activity relationships and drug design, Int. J. Quantum Chem. 16: 221 (1979).CrossRefGoogle Scholar
  9. 9.
    J. J. Kaufman, Recent physicochemical and quantum chemical studies on drugs of abuse and relevant biomolecules, in: “Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists and Hallucinogens, G. Barnett, M. Trsic and R. E. Willette, eds., NIDA Research Monograph 22, DHEW, NIDA (1978), pp. 250–277.Google Scholar
  10. 10.
    P. C. Hariharan, J. J. Kaufman and C. Petrongolo, Electrostatic molecular potential contour maps generated from ab initio MODPOT/VRDDO/MERGE wave functions of carcinogenic benzo(a)pyrene and its metabolites, Int. J. Quantum Chem., Quantum Biol. Symp. 6: 223 (1979).Google Scholar
  11. 11.
    P. C. Hariharan, J. J. Kaufman and C. Petrongolo, Electrostatic molecular potential contour maps generated from ab initio MODPOT/VRDDO/MERGE wave functions of carcinogenic 3-methylcholanthrene and its metabolites, Int. J. Quantum Chem., Quantum Biol. Symp., in press.Google Scholar
  12. 12.
    W. A. Sokalski, P. C. Hariharan, H. E. Popkie, J. J. Kaufman and C. Petrongolo, Molecular calculations with the nonempirical ab initio MODPOT, VRDDO and MODPOT/VRDDO procedures. XI. Theoretical study of the [C6HSO • • • 006H5]- molecular complex: ab initio MODPOT/VRDDO calculations and electrostatic molecular potential contour maps, Int. J. Quantum Chem. 18: 173 (1980).CrossRefGoogle Scholar
  13. 13.
    J. J. Kaufman, Reliable ab initio quantum chemical calculations for energetic species, in proceedings of the NATO Advanced Study Institute on Fast Reactions in Energetic Systems, Preveza Beach, Greece, July 1980, in press.Google Scholar
  14. 14.
    H. E. Popkie, W. S. Koski and J. J. Kaufman, Ab initio LCAO-MOSCF calculations on morphine and nalorphine and comparison with their measured photoelectron spectra, J. Am. Chem. Soc. 98: 1342 (1976).CrossRefGoogle Scholar
  15. 15.
    H. E. Popkie and J. J. Kaufman, Ab initio LCAO-MO-SCF calculations on chloropromazine and promazine, Tnt. J. Quantum Chem. 10: 569 (1976).CrossRefGoogle Scholar
  16. 16.
    A. Agresti, F. Buffoni, J. J. Kaufman and C. Petrongolo, Structure activity relationships of eseroline and morphine: ab initio quantum chemical study of the electrostatic potential and of the interaction energy with water, Mol. Pharmacol., in press.Google Scholar
  17. 17.
    H. E. Popkie and J. J. Kaufman, Test of charge conserving integral approximations for a variable retention of diatomic differential overlap (VRDDO) procedure for semi-ab initio molecular orbital calculations on large molecules, Int. J. Quantum Chem., Quantum Biol. Symp. 2: 279 (1975).Google Scholar
  18. 18.
    H. E. Popkie and J. J. Kaufman, Molecular calculations with the VRDDO/MODPOT procedure: preliminary results for formamide, pyyrole, pyzrazole, imidazole and nitrobenzene, invited lecture presented at the Summer Research Conference on Theoretical Chemistry, Boulder, CO, June 1975.Google Scholar
  19. 19.
    H. E. Popkie and J. J. Kaufman, Molecular calculations with the MODPOT, VRDDO, and MODPOT/VRDDO procedures. I. HF, F2, HC1, C12, formamide, pyrrole, pyridine and nitrobenzene, Int. J. Quantum Chem. Symp. 10: 47 (1976).CrossRefGoogle Scholar
  20. 20.
    H. E. Popkie and J. J. Kaufman, Quantum chemical calculations using the MODPOT/VRDDO method, presented at the International Congress on Quantum Chemistry, New Orleans, April 1976.Google Scholar
  21. 21.
    H. E. Popkie and J. J. Kaufman, Molecular calculations with the MODPOT, VRDDO and MODPOT/VRDDO procedures. II. Cyclopentadiene, benzene, diazoles, diazines and benzonitrile, J. Chem. Phys. 66: 4827 (1977).CrossRefGoogle Scholar
  22. 22.
    J. J. Kaufman, H. E. Popkie, S. Palalikit and P. C. Hariharan, Molecular calculations with the ab initio nonempirical MODPOT, VRDDO and MODPOT/VRDDO procedures. IX. Carcinogenic benzo(a)pyrene and its metabolites using a MERGE technique, Int. J. Quantum Chem. 14: 793 (1978).CrossRefGoogle Scholar
  23. 23.
    J. J. Kaufman, H. E. Popkie and P. C. Hariharan, New optimal strategies for ab initio quantum chemical calculations on large drugs, carcinogens, teratogens and biomolecules, in: “Computer Assisted Drug Design,” E. C. Olson and R. E. Christoffersen, eds., ACS Symposium Series 112, American Chemical Society, Washington, DC (1979), pp. 415–435.CrossRefGoogle Scholar
  24. 24.
    S. F. Boys and F. Bernardi, Calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys. 19: 553 (1970).Google Scholar
  25. 25.
    W. A. Sokalski, P. C. Hariharan, J. J. Kaufman and C. Petrongolo, Basis set superposition effect on difference electrostatic molecular contour potential maps, Int. J. Quantum Chem. 18: 165 (1980).CrossRefGoogle Scholar
  26. 26.
    J. J. Kaufman and E. Kerman, Quantum chemical calculations on antipsychotic drugs and narcotic agents, Int. J. Quantum Chem. Symp. 6: 319 (1972).CrossRefGoogle Scholar
  27. 27.
    J. J. Kaufman, E. Kerman and W. S. Koski, Quantum chemical, other theoretical, and physicochemical studies on narcotics and narcotic antagonists to understand their mechanism of action, Int. J. Quantum Chem., Quantum Biol. Symp. 1: 289 (1974).Google Scholar
  28. 28.
    L. J. Saethre, T. A. Carlson, J. J. Kaufman and W. S. Koski, Nitrogen electron densities in narcotics and narcotic antagonists by X-ray photoelectron spectroscopy and comparison with quantum chemical calculations, Mol. Pharmacol. 11: 492 (1975).Google Scholar
  29. 29.
    R. Bonaccorsi, E. Scrocco and J. Tomasi, A representation of the polarization term in the interaction energy between a molecule and a point-like charge, Theoret. Chim. Acta 43: 63 (1976).CrossRefGoogle Scholar
  30. 30.
    C. Giessner-Pretre and A. Pullman, Molecular electrostatic potentials: Comparison of ab initio and CNDO results, Theoret. Chim. Acta 25: 83 (1972).CrossRefGoogle Scholar
  31. 31.
    W. J. Hehre, F. F. Stewart and J. A. Pople, Self-consistentmolecular-orbital-methods. I. Use 0f Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys. 51: 2657 (1969).Google Scholar
  32. 32.
    G. H. Loew, D. Berkowitz, H. Weinstein and S. Srebrenik, Quantum chemical studies of morphine-like opiate narcotics: effect of polar group variations, in: “Molecular and Quantum Pharmacology,” E. D. Bergmann and B. Pullman, eds., D. Reidel, Dordrecht, Holland (1974), p. 355.CrossRefGoogle Scholar
  33. 33.
    C. Petrongolo and J. Tomasi, The protonation of organic mole- cules: electrostatic vs. SCF CNDO calculations for three- membered ring molecules, Chem. Phys. Lett. 20: 201 (1973).CrossRefGoogle Scholar
  34. 34.
    C. Giessner-Prettre and A. Pullman, On the molecular electrostatic potentials obtained with CNDO and INDO wave functions, Theoret. Chim. Acta 33: 91 (1974).CrossRefGoogle Scholar
  35. 35.
    C. Giessner-Prettre and A. Pullman, On the molecular electrostatic potentials obtained from CNDO wave functions, Theoret. Chim. Acta 37: 335 (1975).CrossRefGoogle Scholar
  36. 36.
    Similar comparisons for other molecules were performed by C. Petrongolo. The results are available to the interested reader.Google Scholar
  37. 37.
    R. Bartolini, P. Aiello-Maimber, A. Bartolini, A. Galli and G. Renzi, Some pharmacological properties of eseroline, a potent antinociceptive molecule structurally related to physostigmine, 7th International Congress of Pharmacology, Paris, July 16–21, 1978, Abstract 430, p. 169.Google Scholar
  38. 38.
    A. Galli, G. Renzi, A. Bartolini, R. Bartolini and P. AielloMalmberg, Inhibition of 3H-naloxone binding in homogenates of rat brain by eseroline, a new analgesic drug related to physostigmine, J. Pharm. Pharmacol. 31: 784 (1979).CrossRefGoogle Scholar
  39. 39.
    A. P. Feinberg, I. Creese and S. H. Snyder, The opiate receptor: A model explaining structure-activity relationships of opiate agonists and antagonists, Proc. Natl. Acad. Sci. 73: 4215 (1976).CrossRefGoogle Scholar
  40. 40.
    J. Reden, M. F. Reich, K. C. Rice, A. E. Jacobson, A. Brossi, R. A. Streaty and W. A. Klee, Deoxymorphines: Role of the phenolic hydroxyl in antinocicéption and opiate receptor interactions, J. Med. Chem. 22: 256 (1979).CrossRefGoogle Scholar
  41. 41.
    C. B. Pert and S. H. Snyder, Properties of opiate-receptor binding in rat brain, Proc. Natl. Acad. Sci. U.S.A. 70: 2243 (1973).CrossRefGoogle Scholar
  42. 42.
    E. Clementi and G. Corongiu, Interaction of water with DNA single and double helix in the B conformation, Int. J. Quantum Chem. 16: 897 (1979).CrossRefGoogle Scholar
  43. 43.
    E. Huberman, L. Sachs, S. K. Yang and H. V. Gelboin, Identification of mutagenic metabolites of benzo(a)pyrene in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 73: 607 (1976).CrossRefGoogle Scholar
  44. 44.
    S. K. Yang, D. W. McCourt, P. P. Roller and H. V. Gelboin, Enzymatic conversion of benzo(a)pyrene leading predominantly to the diol-epoxide r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo(_a)pyrene through a single enantiomer of r-7,t8-dihydroxy-7,8-dihydrobenzo(a)pyrene, Proc. Natl. Acad. Sci. U.S.A. 73: 2594 (1976).CrossRefGoogle Scholar
  45. 45.
    D. M. Jerina, R. E. Lehr, H. Yagi, O. Hernandez, P. M. Dansette, P. G. Wislocki, A. W. Wood, R. L. Chang, W. Levin and A. H. Conney, Mutagenicity of benzo(a)pyrene derivatives and the description of a quantum mechanical model which predicts the ease of carbonium ion formation from diol epoxides, in: “In Vitro Activation in Mutagenesis Testing,” F. J. de Serres, J. R. Fouts, J. R. Bend and R. M. Philpot, eds., Elsevier, Amsterdam (1976), pp. 159–177.Google Scholar
  46. 46.
    I. B. Weinstein and D. Grunberger, Structural and functional changes in nucleic acids modified by chemical carcinogens, in: “Chemical Carcinogenesis, Part A and B,” Marcel Dekker Inc., New York (1974), pp. 217–235.Google Scholar
  47. 47.
    K. Nakanishi, H. Kasai, H. Cho, R. G. Harvey, A. M. Jeffrey, K. W. Jennette, I. B. Weinstein, Absolute configuration of a ribonucleic acid adduct formed in vivo by metabolism of benzo(a)pyrene, J. Am. Chem. Soc. 99: 258 (1977).CrossRefGoogle Scholar
  48. 48.
    J. J. Kaufman, Spin, symmetry and orbital filling restrictions indicate the necessity for ab initio configuration interaction calculations in several fundamental chemical carcinogenesis problems, Int. J. Quantum Chem., Quantum Biol. Symp. 6: 503 (1979).Google Scholar
  49. 49.
    J. J. Kaufman, H. E. Popkie, S. Palalikit and P. C. Hariharan, Molecular calculations with the ab initio non-empirical MODPOT, VRDDO and MODPOT/VRDDO procedures. IX. Carcinogenic benzo(a)-pyrene and its metabolites using a MERGE technique, Int. J. Quantum Chem. 14: 793 (1978).CrossRefGoogle Scholar
  50. 50.
    P. C. Hariharan, H. E. Popkie and J. J. Kaufman, Molecular calculations with the non-empirical ab initio MODPOT, VRDDO and MODPOT/VRDDO procedures. XII. Carcinogenic 3-methylcholanthrene and its metabolites using a MERGE technique, Int. J. Quantum Chem., Quantum Biol. Symp., in press.Google Scholar
  51. 51.
    K. Balasubramanian, P. C. Hariharan, and J. J. Kaufman, research in progress.Google Scholar
  52. 52.
    E. Freese, private communication, 1977.Google Scholar
  53. 53.
    E. Freese, B. C. Levin, R. Pearce, T. Sreevalsan, J. J. Kaufman, W. S. Koski and N. M. Semo, Correlation between the growth inhibitory effect, partition coefficients and teratogenic effects of lipophilic acids, Teratology 20: 413 (1979).CrossRefGoogle Scholar
  54. 54.
    S. Aoki, Y. Harita, Y. Tanaka, H. Mandi and T. Otsu, Relative activities of cyclic ethers in cationic polymerizations: effects of ring strain and basicity, J. Polymer Sci. Part A-1 6: 2585 (1968).CrossRefGoogle Scholar
  55. 55.
    J. J. Kaufman, Theoretical approaches to pharmacology, Int. J. Quantum Chem., Quantum Biol. Symp. 4: 375 (1977).Google Scholar
  56. 56.
    F. L. Tobin, P. C. Hariharan and J. J. Kaufman, The Johns Hopkins University, research in progress.Google Scholar
  57. 57.
    R. S. Miller, Office of Naval Research, private communication, August 1/8Q.Google Scholar
  58. 58.
    R. S. Miller, Office of Naval Research, private communication, April 1480.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Joyce J. Kaufman
    • 1
    • 2
  • P. C. Hariharan
    • 1
    • 2
  • Frank L. Tobin
    • 1
    • 2
  • Carlo Petrongolo
    • 3
    • 4
  1. 1.Department of ChemistryThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of AnesthesiologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Laboratorio di Chimica Quantistica ed EnergeticaMolecolare del C.N.R.PisaItaly
  4. 4.The Johns Hopkins UniversityUSA

Personalised recommendations