Advertisement

Forced Oscillations and Routes to Chaos in the Hodgkin-Huxley Axons and Squid Giant Axons

  • K. Aihara
  • G. Matsumoto
Part of the NATO ASI Series book series (NSSA, volume 138)

Abstract

Nonlinear responses of a neural oscillator to sinusoidal force are analysed theoretically with the Hodgkin-Huxley equations and experimentally with squid giant axons.

First, the periodically forced oscillations in the nerve membranes are qualitatively classified into (1) synchronised oscillations, (2) quasi-periodic oscillations and (3) chaotic oscillations by examining the Poincaré sections and the return maps.

Second, it is confirmed that there exist the three types of routes to the chaos, namely, (1) the successive period-doubling bifurcations, (2) the intermittency and (3) the collapse of the quasi-periodicity. The global structure of the three routes and many Arnold’s tongues of the synchronised oscillations in the parameter space is also examined.

Last, simple mapping models of the neural responses are discussed.

Keywords

Bifurcation Diagram Chaotic Oscillation Giant Axon Neural Oscillator Squid Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.H. Ackley, G.E. Hinton and T.J. Sejnowski, Cognitive Sci. 9: 147 (1985).CrossRefGoogle Scholar
  2. [2]
    K. Aihara, M. Kotani and G. Matsumoto, in “Structure, Coherence and Chaos”,ed. P.L. Christiansen, Manchester Univ. Press, Manchester (1987).Google Scholar
  3. [3]
    K. Aihara and G. Matsumoto, J. Theor. Biol. 95: 697 (1982).PubMedCrossRefGoogle Scholar
  4. [4]
    K. Aihara and G. Matsumoto, Biophys. J. 41: 87 (1983).PubMedCrossRefGoogle Scholar
  5. [5]
    K. Aihara and G. Matsumoto, in “Chaos”, ed. A.V. Holden, 257, Manchester Univ. Press, Manchester and Princeton Univ. Press, Princeton, N.J. (1986).Google Scholar
  6. [6]
    K. Aihara and G. Matsumoto, in “Dynamical Systems and Nonlinear Oscillations”, ed. G. Ikegami, 254, World Scientific, Singapore (1986).Google Scholar
  7. [7]
    K. Aihara, G. Matsumoto and M. Ichikawa, Phys. Lett. A111: 251 (1985).CrossRefGoogle Scholar
  8. [8]
    K. Aihara, G. Matsumoto and Y. Ikegaya, J. Theor. Biol. 109: 249 (1984).PubMedCrossRefGoogle Scholar
  9. [9]
    K. Aihara, T. Numajiri, G. Matsumoto and M. Kotani, Phys. Lett. A116: 313 (1986).CrossRefGoogle Scholar
  10. [10]
    K. Aihara, T. Numajiri et al., in preparation.Google Scholar
  11. [11]
    K. Aihara, T. Takabe et al., in preparation.Google Scholar
  12. [12]
    J. Belair, J. Math. Biol. 24: 217 (1986).PubMedCrossRefGoogle Scholar
  13. [13]
    E.R. Caianiello, J. Theor. Biol. 2: 204 (1961).CrossRefGoogle Scholar
  14. [14]
    K.S. Cole, R. Guttman and F. Bezanilla, Proc. Nat. Acad. Sci. 65: 884 (1970).PubMedCrossRefGoogle Scholar
  15. [15]
    R. Fitzhugh, in “Biological Engineering”,ed. H.P. Schwan, 1, McGraw-Hill, New York (1969).Google Scholar
  16. [16]
    J.M. Gambaudo, P. Glendenning and C. Tresser, Phys. Lett. 105A: 97 (1984).CrossRefGoogle Scholar
  17. [17]
    L. Glass, M.R. Guevara, A. Shrier and R. Perez, Physica 7D: 89 (1983).Google Scholar
  18. [18]
    J. Guckenheimer, Physica 1D: 227 (1980).Google Scholar
  19. [19]
    M.R. Guevara, L. Glass, M.C. Mackey and A. Shrier, IEEE, SMC-13: 790 (1983).Google Scholar
  20. [20]
    R. Guttman, L. Feldman and E. Jakobsson, J. Memb. Biol. 56: 9 (1980).CrossRefGoogle Scholar
  21. [21]
    H. Hayashi, S. Ishizuka, M. Ohta and K. Hirakawa, Phys. Lett. A88: 435 (1982).CrossRefGoogle Scholar
  22. [22]
    A.L. Hodgkin and A.F. Huxley, J. Physiol. (London) 117: 500 (1952).Google Scholar
  23. [23]
    A.V. Holden, Biol. Cybern. 38: 1 (1980).PubMedCrossRefGoogle Scholar
  24. [24]
    A.V. Holden, P.G. Haydon and W. Winlow, Biol. Cybern. 46: 167 (1983).PubMedCrossRefGoogle Scholar
  25. [25]
    A.V. Holden, W. Winlow and P.G. Haydon, Biol. Cybern. 43: 169 (1982).PubMedCrossRefGoogle Scholar
  26. [26]
    A.F. Huxley, Ann. N.Y. Acad. Sci. 81: 221 (1959).PubMedCrossRefGoogle Scholar
  27. [27]
    J.H. Jensen, P.L. Christiansen, A.C. Scott and O. Skovgaard, Physica 13D: 269 (1984).Google Scholar
  28. [28]
    K. Kaneko, Prog. Theor Phys. 72: 1089 (1984).CrossRefGoogle Scholar
  29. [29]
    K. Kaneko, in “Chaos and Statistical Methods”, ed. Y. Kuramoto 83, Springer, Berlin (1984).Google Scholar
  30. [30]
    J.P. Keener and L. Glass, J. Math. Biol. 21: 175 (1984).PubMedCrossRefGoogle Scholar
  31. [31]
    J.P. Keener, F.C. Hoppensteadt and J. Rinzel, SIAM. J. Appl. Math. 41: 503 (1981).CrossRefGoogle Scholar
  32. [32]
    R.S. MacKay and C. Tresser, Physica 19D: 206 (1986).Google Scholar
  33. [33]
    M. Marek, L. Vroblova and I. Schreiber, Lecture at MIDIT Workshop on Structure, Coherence and Chaos in Dynamical Systems (1986).Google Scholar
  34. [34]
    G. Matsumoto, in “Nerve Membrane, Biochemistry and Function of Channel Proteins”,eds. G. Matsumoto and M. Kotani, 203, University of Tokyo Press, Tokyo (1981).Google Scholar
  35. [35]
    G. Matsumoto, K. Aihara, Y. Hanyu, N. Takahashi, S. Yoshizawa and J. Nagumo, in preparation. See also the paper by G. Matsumoto in this volume.Google Scholar
  36. [36]
    G. Matsumoto, K. Aihara, M. Ichikawa and A. Tasaki, J. Theoret. Neurobiol. 3: 1 (1984).Google Scholar
  37. [37]
    R.M. May, Nature 261: 459 (1976).PubMedCrossRefGoogle Scholar
  38. [38]
    J. Nagumo and S. Sato, Kybernetik 10: 155 (1972).PubMedCrossRefGoogle Scholar
  39. [39]
    S. Ostlund, D. Rand, J. Sethna and E. Siggia, Physica 8D: 303 (1983).Google Scholar
  40. [40]
    Y. Pomeau and P. Manneville, Commun. Math. Phys. 74: 189 (1979).CrossRefGoogle Scholar
  41. [41]
    I. Shimada and T. Nagashima, Prog. Theor. Phys. 61: 1605 (1979).CrossRefGoogle Scholar
  42. [42]
    I. Tasaki, J. Physiol. (London) 148: 306 (1959).Google Scholar
  43. [43]
    J.M.T. Thompson and H.B. Stewart, “Nonlinear dynamics and Chaos”, John Wiley and Sons, Chichester (1986).Google Scholar
  44. [44]
    C. Torras i Genfs, J. Math. Biol. 24: 291 (1986).CrossRefGoogle Scholar
  45. [45]
    I. Tsuda, Phys. Lett. 85A: 4 (1981).CrossRefGoogle Scholar
  46. [46]
    M. Yamaguchi and M. Hata, in “Competition and Cooperation in Nerve Nets”, ed. S. Amari and M.A. Arbib, 171, Springer, Berlin (1982).CrossRefGoogle Scholar
  47. [47]
    S. Yoshizawa, H. Osada and J. Nagumo, Biol. Cybern. 45: 23 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • K. Aihara
    • 1
  • G. Matsumoto
    • 2
  1. 1.Department of Electronic Engineering Faculty of EngineeringTokyo Denki UniversityKanda Chiyoda-ku Tokyo 101Japan
  2. 2.Electrotechnical LaboratoryTsukuba Science CityNiihari-gun Ibaraki 305Japan

Personalised recommendations