Advertisement

Chaos in Physiology: Health or Disease?

  • Ary L. Goldberger
  • Bruce J. West
Part of the NATO ASI Series book series (NSSA, volume 138)

Abstract

The universality of ‘chaotic’ dynamics in mathematical and physical systems [1–4] has prompted renewed interest in the application of nonlinear analysis to biological processes [4,5]. Attention has also focused on the physiological and medical implications of these concepts [4,6–11]. The prevailing viewpoint is that the dynamics of health are ordered arra regular and that a variety of pathologies represent a bifurcation to chaos [6,9,12]. For example, Smith and Cohen [9] advanced the hypothesis that ventricular fibrillation, the arrhythmia most commonly associated with sudden cardiac death, is a turbulent process (cardiac chaos) that may result from a subharmonic bifurcation (period-doubling) mechanism.

Keywords

Heart Rate Variability Sudden Cardiac Death Ventricular Fibrillation Medical Implication Heart Rate Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.M. May, Nature (London) 261: 459–467 (1976).CrossRefGoogle Scholar
  2. M.J. Feigenbaum, Commun. Math. Phys. 77:65–86 (1980).Google Scholar
  3. [3]
    J-P. Eckmann, Rev. Mod. Phys. 53: 643–654 (1981).CrossRefGoogle Scholar
  4. [4]
    A.V. Holden, ed.,“Chaos”, University Press, Manchester and Princeton (1986).Google Scholar
  5. [5]
    L.F. Olsen and H. Degn, Quart. Rev. Biophys. 18: 165–225 (1985).CrossRefGoogle Scholar
  6. [6]
    M.C. Mackey and L. Glass, Science 197: 287–289 (1977).PubMedCrossRefGoogle Scholar
  7. M.R. Guevara and L. Glass, J. Math. Biol. 14:1–23 (1982).Google Scholar
  8. [8]
    A.L. Goldberger, L.J. Findley, M.R. Blackburn and A.J. Mandell, Am. Heart J. 107: 612–615 (1984).CrossRefGoogle Scholar
  9. J.M. Smith and R.J. Cohen, Proc. Natl. Acad. Sci. U.S.A. 81:233237 (1984).Google Scholar
  10. M. Sernetz, B. Gelleri and J. Hofmann, J. Theor. Biol. 117:209–230 (1985).Google Scholar
  11. [11]
    A. Babloyantz and A. Destexhe, Proc. Natl. Acad. Sci. U.S.A. 83:. 3513–3517 (1986).Google Scholar
  12. D. Ruelle, Math. Intelligencer 2:126–137 (1980).Google Scholar
  13. [13]
    A.L. Goldberger, V. Bhargava, B. West and A. J. Mandell, Physica 17D: 207–214 (1985).Google Scholar
  14. [14]
    A.L. Goldberger, B.J. West and V. Bhargava, in “Proc. 11th International Modeling and Computers in Simulation” World Congress, Oslo, Norway, Vol. 2, eds. B. Wahlstrom, R. Henriksen and N.P. Sundby, 239–242, North Holland Publishing Co., Amsterdam (1985).Google Scholar
  15. [15]
    A.L. Goldberger, in “Temporal Disorder in Human Oscillatory Systems”, eds. L. Rensing, U. An der Heiden and M. Mackey, Springer, Berlin, in press.Google Scholar
  16. [16]
    A.L. Goldberger, V. Bhargava, B. J. West and A.J. Mandell, Physica 19D: 282–289 (1986).Google Scholar
  17. [17]
    A.J. Mandell, S. Knapp, C.L. Ehlers and P.V. Russo, in “Neurobiology of the Mood Disorders”, eds. R.M. Post and J.C. Ballenger, 744–776, Williams and Wilkins, Baltimore (1983).Google Scholar
  18. M. Kobayashi and T. Musha, IEEE Trans. Biomed. Eng. 29:456–457 (1982).PubMedCrossRefGoogle Scholar
  19. A.L. Goldberger, K. Kobalter and V. Bhargava, IEEE Trans. Biomed. Eng. 33:874–876 (1986).CrossRefGoogle Scholar
  20. T. Musha, Y. Kosugi, G. Matsumoto and M. Suzuki, IEEE Trans. Biomed. Eng. 28:616–623 (1981).Google Scholar
  21. E.W. Montroll and M.F. Shlesinger, J. Stat. Phys. 32:209–230 (1983)CrossRefGoogle Scholar
  22. [22]
    B.B. Mandelbrot, “The Fractal Geometry of Nature”, W.H. Freeman, New York (1982).Google Scholar
  23. A.L. Goldberger, V. Bhargava, B.J. West and A.J. Mandell, Biophys. J. 48:525–528 (1985).Google Scholar
  24. B.J. West, V. Bhargava and A.L. Goldberger, J. Appl. Physiol. 60: 1089–1097 (1986).PubMedGoogle Scholar
  25. J. Lefevre, J. Theor. Biol. 102:225–248 (1985).CrossRefGoogle Scholar
  26. [26]
    B.J. West and A.L. Goldberger, Am. Scientist in press.Google Scholar
  27. [27]
    H.A. Reimann, “Periodic Diseases”, F.A. Davis, Philadelphia (1963).Google Scholar
  28. [28]
    R.E. Ideker, G.J. Klein, L. Harrison et al., Circulation 63: 13711379 (1981).Google Scholar
  29. [29]
    S.J. Worley, J.L. Swain, P.G. Colavita et al., Am. J. Cardiol. 55: 813–820 (1985).PubMedCrossRefGoogle Scholar
  30. V. Bhargava, A.L. Goldberger, D. Ward and S. Ahnve, IEEE Trans. Biomed. Eng. 33:894–896 (1986).PubMedCrossRefGoogle Scholar
  31. A.L. Goldberger, R. Shabetai, V. Bhargava, B.J. West and A.J. Mandell, Am. Heart. J. 107:1297–1299 (1984).Google Scholar
  32. [32]
    M.R. Guevara, L. Glass and A. Shrier, Science 214: 1350–1353 (1981).Google Scholar
  33. [33]
    A.L. Ritzenberg, D.R. Adam and R. J. Cohen, Nature (London), 307: 159–161 (1984).CrossRefGoogle Scholar
  34. [34]
    H.D. Modanlou and R.K. Freeman, Am. J. Obstet. Gynecol. 142:1033–1038 (1982).PubMedGoogle Scholar
  35. [35]
    H. Vodopick, E.M. Rupp, C.L. Edwards, F.A. Goswitz and J.J. Beauchamp, N. Engl. J. Med. 286:284–290 (1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Ary L. Goldberger
    • 1
  • Bruce J. West
    • 2
  1. 1.Harvard Medical School Cardiovascular DivisionBeth Israel HospitalBostonUSA
  2. 2.Division of Applied Nonlinear ProblemsLa Jolla InstituteLa JollaUSA

Personalised recommendations