Advertisement

Computational Studies of the Spatial Architecture of Primate Visual Cortex

Columns, Maps, and Protomaps
  • Eric L. Schwartz
Part of the Cerebral Cortex book series (CECO, volume 10)

Abstract

Computational neuroscience is a term that has recently come into widespread use, following a symposium* which was organized in the mid-1980s for the purpose of defining an area of research that had more contact with the biology of the brain than was (and is) customary in areas such as neural networks, but which involved significant mathematical and computational techniques and ideas. Some of the themes discussed in this symposium [later published in book form (Schwartz, 1990)] were that the study of brain form and function necessarily involved a hierarchy of spatial scales, and that computational techniques were associated with neuroscience in two complementary ways:
  1. 1.

    The application of methods of computer graphics, image processing, and numerical analysis is critical to the description of the nervous system.

     
  2. 2.

    Understanding of the possible functional utility of neural architectures is likely to feed back to computation via the design of machine vision, robotics, and other applications.

     

Keywords

Visual Cortex Conformal Mapping Machine Vision Magnification Factor Striate Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlfors, L., 1966, Complex Analysis, McGraw-Hill, New York.Google Scholar
  2. Allman, J. M., and Kaas, J. H., 1971, Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus), Brain Res. 35: 89–106.PubMedCrossRefGoogle Scholar
  3. Anderson, C. H., Burt, P. J., and van der Wal, G. S., 1985, Change detection and tracking using pyramid transform techniques, Proc. SPIE Conf. Intelligent Robots and Computer Vision, pp. 72-78.Google Scholar
  4. Baloch, A. A., 1991, Visual learning: Adaptive expectations, and behavioural conditioning of the mobile robot mavin, Neural Networks 4: 271–302.CrossRefGoogle Scholar
  5. Bederson, B., Wallace, R., and Schwartz, E., 1992a, Two miniature pan-tilt devices, IEEE International Conference on Robotics and Automation, in press.Google Scholar
  6. Bederson, B., Wallace, R. S., and Schwartz, E. L., 1992b, A miniaturized active vision system, in: 11th IAPR International Conference on Pattern Recognition, Specialty Conference on Pattern Recognition Hardware Architecture, The Hague.Google Scholar
  7. Blasdel, G. G., 1992, Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex, J. Neurosci. 12: 3115–3138.PubMedGoogle Scholar
  8. Blasdel, G., and Salama, G., 1986, Voltage sensitive dyes reveal a modular organisation in monkey striate cortex, Nature 321: 579–585.PubMedCrossRefGoogle Scholar
  9. Bonhoeffer, T., and Grinvald, A., 1991, Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns, Nature 353: 429–431.PubMedCrossRefGoogle Scholar
  10. Bourdon, B., 1902, La Perception Visuelle de l’Espace, Scheicher, Paris.Google Scholar
  11. Brousil, J. K., and Smith, D. R., 1967, A threshold-logic network for shape invariance, IEEE Trans. Comput. 16: 818–828.Google Scholar
  12. Burt, P. J., 1988a, Algorithms and architectures for smart sensing, Proc. DARPA Image Understanding Workshop, pp. 139-153.Google Scholar
  13. Burt, P. J., 1988b, Smart sensing within a pyramid machine, IEEE Proc. 76(8): 1006–1015.CrossRefGoogle Scholar
  14. Burt, P., and Adelson, T., 1981, A Laplacian pyramid for data compression, IEEE Trans. Commun. 8: 1230–1245.Google Scholar
  15. Casasent, D., and Psaltis, D., 1976, Position, rotation and scale-invariant optical correlation, Appl. Opt. 15: 1793–1799.Google Scholar
  16. Chaikin, G. M., and Weiman, F. R., 1980, Conformai computational geometry for machine vision, in: Proceedings 5th International Conference on Pattern Recognition.Google Scholar
  17. Chinn, W. G., and Steenrod, N. E., 1966, A First Course Topology, Mathematical Association of America, Washington, D.C.Google Scholar
  18. Coletta, N., and Williams, D. R., 1987, Psychophysical estimate of extrafoveal cone spacing, J. Opt. Soc. Am. A 4: 1503–1513.CrossRefGoogle Scholar
  19. Cowey, A., 1964, Projection of the retina on to striate and prestriate cortex in the squirrel monkey, Saimiri sciureus, J. Neurophysiol. 27: 366–293.Google Scholar
  20. Daniel, M., and Whitteridge, D., 1961, The representation of the visual field on the cerebral cortex in monkeys, J. Physiol. (London) 159: 203–221.Google Scholar
  21. DeValois, R. L., and DeValois, K. K., 1988, Spatial Vision, Oxford University Press, London.Google Scholar
  22. Dow, B. M., Snyder, A. Z., Vautin, R. G., and Bauer, R., 1981, Magnification factor and receptive field size in foveal striate cortex of monkey, Exp. Brain Res. 44: 213–228.PubMedCrossRefGoogle Scholar
  23. Dow, B., Vautin, R. G., and Bauer, R., 1985, The mapping of visual space onto foveal striate cortex in the macaque monkey, J. Neurosci. 5: 890–902.PubMedGoogle Scholar
  24. Fendick, M., and Westheimer, G., 1983, Effects of practice and the separation of test targets on foveal and peripheral stereoacuity, Vision Res. 23: 145–150.PubMedCrossRefGoogle Scholar
  25. Fox, P. T., Miezin, F. M., Allman, J. M., Essen, D. C. V., and Raichle, M. E., 1987, Retinotopic organization of human visual cortex mapped with positron emission tomography, J. Neurosci. 7: 913–922.PubMedGoogle Scholar
  26. Frederick, G., and Schwartz, E. L., 1990, Conformai image warping, IEEE Comput. Graphics Appl. March: 54–61.CrossRefGoogle Scholar
  27. Frostig, R. D., Lieke, E. E., Ts’o, D. Y., and Grinvald, A., 1990, Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, Proc. Natl. Acad. Sci. USA 87: 6082–6086.PubMedCrossRefGoogle Scholar
  28. Horton, J. C., and Hedley-White, E. T., 1984, Cytochrome oxidase studies of human visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 255–272.CrossRefGoogle Scholar
  29. Hubel, D. H., and Freeman, D. C., 1977, Projection into the visual field of ocular-dominance columns in macaque monkey, Brain Res. 122: 336–343.PubMedCrossRefGoogle Scholar
  30. Hubel, D. H., and Livingstone, M. S., 1985, Complex-unoriented cells in a subregion of primate area 18, Nature 315: 325–327.PubMedCrossRefGoogle Scholar
  31. Hubel, D. H., and Wiesel, T. N., 1974, Sequence regularity and geometry of orientation columns in the monkey striate cortex, J. Comp. Neurol. 158: 267–293.PubMedCrossRefGoogle Scholar
  32. Jain, R., 1986, Complex log mapping and the focus of expansion, in: ACM Siggraph/Sigart Interdisciplinary Workshop, pp. 137–142. Elsevier/North-Holland, Amsterdam.Google Scholar
  33. Jain, R., Bartlett, S. L., and O’Brien, N., 1987, Motion stereo using ego-motion complex logarithmic mapping, PAMI 3: 356–369.CrossRefGoogle Scholar
  34. Kelly, D. H., 1990, Retinocortical processing of spatial patterns, SPIE Transactions on Human Vision and Electronic Imaging, 1249.Google Scholar
  35. Klein, S. A., and Levi, D. M., 1987, Position sense of the peripheral retina, J. Opt. Soc. Am. A 4: 1543–1553.PubMedCrossRefGoogle Scholar
  36. Koenderink, J., van de Grind, A. W., and Bouman, M. A., 1978, Perimetry of contrast detection thresholds and moving sine wave patterns, J. Opt. Soc. Am. 68: 845–865.PubMedCrossRefGoogle Scholar
  37. Landau, P., and Schwartz, E. L., 1992, Computer simulation of cortical polymaps: A proto-column algorithm, Neural Networks 5: 187–206.CrossRefGoogle Scholar
  38. LeVay, S., Hubel, D. H., and Wiesel, T. N., 1975, The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain, J. Comp. Neurol. 159: 559–576.PubMedCrossRefGoogle Scholar
  39. Levi, D., Klein, S. A., and Aitsebaomo, A., 1985, Vernier acuity, crowding and cortical magnification, Vision Res. 25: 963–977.PubMedCrossRefGoogle Scholar
  40. Levi, D. M., and Klein, S. A., 1982, Vernier acuity, crowding and amblyopia, Invest. Ophthalmol. Visual Sci. 23: 398–407.Google Scholar
  41. McKee, S., and Nakayama, K., 1984, The detection of motion in the peripheral visual field, Vision Res. 24: 25–32.PubMedCrossRefGoogle Scholar
  42. Miller, K. D., Keller, J. B., and Stryker, M. P., 1989, Ocular dominance column development: Analysis and simulation, Science 245: 605.PubMedCrossRefGoogle Scholar
  43. Nakayama, K., 1990, The iconic bottleneck and the tenuous link between early visual processing and perception, in: Vision: Coding and Efficiency (C. Blakemore, ed.), Cambridge University Press, London, pp. 411–422.Google Scholar
  44. Osterberg, G., 1935, Topography of the layer of rods and cones in the human retina, Acta Ophthalmol. Supp. 6: 1–103.Google Scholar
  45. Perry, V. H., and Cowey, A., 1985, The ganglion cell and cone distributions in the monkeys retina: Implications for central magnification factor, Vision Res. 25: 1795–1810.PubMedCrossRefGoogle Scholar
  46. Press, W H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1988, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, London.Google Scholar
  47. Rojer, A., and Schwartz, E. L., 1990a, Cat and monkey cortical columnar patterns modeled by bandpass-filtered 2d white noise, Biol. Cybern. 62: 381–391.PubMedCrossRefGoogle Scholar
  48. Rojer, A. S., and Schwartz, E. L., 1990b, Design considerations for a space-variant visual sensor with complex-logarithmic geometry, 10th International Conference on Pattern Recognition, Volume 2, pp. 278–285.Google Scholar
  49. Rosenbluth, D., Munsiff, A., Albright, T., and Schwartz, E., 1992, Computer reconstruction from 2dg serial sections of the topographic map of macaque visual cortex, Soc. Neurosci. Abstr. 18: 742.Google Scholar
  50. Rovamo, J., and Virsu, V., 1979, An estimation and application of human cortical magnification factor, Exp. Brain Res. 37: 495–510.PubMedCrossRefGoogle Scholar
  51. Rovamo, J., Virsu, V., Laurinen, P., and Hyvarinen, L., 1978, Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision, Nature 271: 54–56.PubMedCrossRefGoogle Scholar
  52. Sandini, G., and Dario, P., 1989, Active vision based on space-variant sensing, Int. Symp. Robotics Res.Google Scholar
  53. Sandini, G., Bosero, F., Bottino, F., and Ceccherini, A., 1989, The use of an anthropomorphic visual sensor for motion estimation and object tracking, Proc. OSA Topical Meeting on Image Understanding and Machine Vision.Google Scholar
  54. Schein, S. J., and de Monasterio, F. M., 1987, Mapping of retinal and geniculate neurons onto striate cortex of macaque, J. Neurosci. 7: 996–1009.PubMedGoogle Scholar
  55. Schwartz, E. L., 1976, Analytic structure of the retinotopic mapping and relevance to perception, 6th Annual Meeting of the Society for Neuroscience Abstracts 6: 1636.Google Scholar
  56. Schwartz, E. L., 1977a, Afferent geometry in the primate visual cortex and the generation of neuronal trigger features, Biol. Cybernetics 28: 1–24.CrossRefGoogle Scholar
  57. Schwartz, E. L., 1977b, The development of specific visual projections in the monkey and the goldfish: Outline of a geometric theory of receptotopic structure, J. Theor. Biol. 69: 655–685.PubMedCrossRefGoogle Scholar
  58. Schwartz, E. L., 1977c, Spatial mapping in primate sensory projection: Analytic structure and relevance to perception, Biol. Cybern. 25: 181–194.PubMedCrossRefGoogle Scholar
  59. Schwartz, E. L., 1980, Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding, Vision Res. 20: 645–669.PubMedCrossRefGoogle Scholar
  60. Schwartz, E. L., 1981, Positron emission tomography studies of human visual cortex, Soc. Neurosci. Abstr. 7: 367.Google Scholar
  61. Schwartz, E. L., 1983, Cortical anatomy and size invariance, Vision Res. 18: 24–58.Google Scholar
  62. Schwartz, E. L., 1984, Anatomical and physiological correlates of human visual perception, IEEE Trans. Syst. Man Cybern. 14: 257–271.CrossRefGoogle Scholar
  63. Schwartz, E. L., 1985a, Image processing simulations of the functional architecture of primate striate cortex, Invest. Ophthalmol. Visual Res. (Suppl.) 26(3): 1–64.Google Scholar
  64. Schwartz, E. L., 1985b, On the mathematical structure of the retinotopic mapping of primate striate cortex, Science 227: 1066.CrossRefGoogle Scholar
  65. Schwartz, E. L. (ed.), 1990, Computational Neuroscience, MIT Press, Cambridge, Mass.Google Scholar
  66. Schwartz, E. L., and Merker, B., 1985, Flattening cortex: An optimal computer algorithm and comparisons with physical flattening of the opercular surface of striate cortex, Soc. Neurosci. Abstr. 15.Google Scholar
  67. Schwartz, E. L., and Merker, B., 1986, Computer-aided neuroanatomy: Differential geometry of cortical surfaces and an optimal flattening algorithm, IEEE Comput. Craphics Appl. 6(2): 36–44 (March).CrossRefGoogle Scholar
  68. Schwartz, E. L., Christman, D. R., and Wolf, A. P., 1983, Human primary visual cortex topography imaged via positron-emission tomography, Brain Res. 104: 104–112.Google Scholar
  69. Schwartz, E. L., and Rojer, A. S., 1992, A computational study of cortical hypercolumns and the topology of random orientation maps, Soc. Neurosci. Abstr. 18: 742.Google Scholar
  70. Schwartz, E. L., Shaw, A., and Weinshall, D., 1987, Flattening visual cortex at image resolution: Quantitative computer reconstruction of the macaque ocular dominance column pattern, Neurosci. Abstr. p. 1293.Google Scholar
  71. Schwartz, E. L., Merker, B., Wolfson, E., and Shaw, A., 1988, Computational neuroscience: Applications of computer graphics and image processing to two and three dimensional modeling of the functional architecture of visual cortex, IEEE Comput. Graphics Appl. 8(4): 13–28 (July).CrossRefGoogle Scholar
  72. Schwartz, E. L., Shaw, A., and Wolfson, E., 1989, A numerical solution to the generalized mapmaker’s problem, IEEE Trans. Pattern Anal. Mach. Intell. 11: 1005–1008.CrossRefGoogle Scholar
  73. Shostak, S., 1992, The ultimate motion imaging system: What-and when? Advanced Imaging pp. 39-41.Google Scholar
  74. Swindale, N. V., 1980, A model for the formation of ocular dominance column stripes, Proc. R. Soc. London Ser. B 208: 243–264.CrossRefGoogle Scholar
  75. Swindale, N. V., 1982, A model for the formation of orientation columns, Proc. R. Soc. London Ser. B 215: 211–230.CrossRefGoogle Scholar
  76. Talbot, S. A., and Marshall, W. H., 1941, Physiological studies on neural mechanisms of visual localization and discrimination, Am. J. Ophthalmol. 24: 1255–1263.Google Scholar
  77. Tootell, R. B., Silverman, M., Switkes, E., and De Valois, R., 1982, Deoxyglucose analysis of retinotopic organization in primate striate cortex, Science 218: 902–904.PubMedCrossRefGoogle Scholar
  78. Tootell, R. B., Silverman, M. S., Switkes, E., and De Valois, R., 1985, Deoxyglucose retinotopic mapping and the complex log model in striate cortex, Science 227: 1066.PubMedCrossRefGoogle Scholar
  79. Tootell, R. B. H., Hamilton, S. L., Silverman, M. S., and Switkes, E., 1988a, Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions, J. Neurosci. 8: 1531–1568.PubMedGoogle Scholar
  80. Tootell, R. B. H., Switkes, E., Silverman, M. S., and Hamilton, S. L., 1988b, Functional anatomy of macaque striate cortex. II. Retinotopic organization, J. Neurosci. 8: 1569.PubMedGoogle Scholar
  81. Tusa, R. J., Palmer, L. A., and Rosenquist, A. C., 1978, The retinotopic organization of area 17 (striate cortex) in the cat, J. Comp. Neurol. 177: 213–236.PubMedCrossRefGoogle Scholar
  82. van der Spiegel, J., Kreider, F., Claiys, C., Debusschere, I., Sandini, G., Dario, P., Fantini, F., Belluti, P., and Soncini, G., 1989, A foveated retina-like sensor using ccd technology, in: Analog VLSI Implementations of Neural Networks (C. Mead and M. Ismail, eds.), Kluwer, Boston.Google Scholar
  83. van Essen, D. G., Newsome, W. T., and Maunsell, J. H. R., 1984, The visual representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability, Vision Res. 24: 429–448.PubMedCrossRefGoogle Scholar
  84. Wallace, R., Ong, P.-W., Bederson, B., and Schwartz, E., 1993, Space variant image processing, Int. J. Mach. Vision, in press.Google Scholar
  85. Wassle, H., Grunert, U., Rohrenbeck, J., and Boycott, B. B., 1989, Cortical magnification factor and the ganglion cell density of the primate retina, Nature 341: 643–646.PubMedCrossRefGoogle Scholar
  86. Watson, A. B., 1987, Estimation of local spatial scale, J. Opt. Soc. Am. A 4: 1579–1582.PubMedCrossRefGoogle Scholar
  87. Weiman, C. F. R., 1988a, 3-d sensing with polar exponential sensor arrays, SPIE Conf. Digital and Optical Shape Representation and Pattern Recognition.Google Scholar
  88. Weiman, C. F. R., 1988b, Exponential sensor array geometry and simulation, SPIE Conf. Digital and Optical Shape Representation and Pattern Recognition.Google Scholar
  89. Weiman, C. F. R., 1990, Video compression via log polar mapping, SPIE Symposium on OE/Aerospace Sensing, pp. 1-12.Google Scholar
  90. Weiman, C. F., and Chaikin, G., 1979, Logarithmic spiral grids for image-processing and display, Computer Graphics and Image Processing 11: 197–226.CrossRefGoogle Scholar
  91. Weinshall, D., and Schwartz, E. L., 1987, A new method for measuring the visuotopic map function of striate cortex: Validation with macaque data and possible extension to measurement of the human map, Soc. Neurosci. Abstr., p. 1291.Google Scholar
  92. Wertheim, T., 1894, Uber die indirekte sehscharfe, Z. Psychol. Physiol. Sinnesorg. 7: 172–189.Google Scholar
  93. Westheimer, G., 1979, The spatial sense of the eye, Invest. Ophthalmol. Visual Sci. 18: 893–912.Google Scholar
  94. Westheimer, G., 1982, The spatial grain of the perifoveal visual field, Vision Res. 22: 157–162.PubMedCrossRefGoogle Scholar
  95. Weymouth, F. W., 1958, Visual sensory units and the minimal angle of resolution, Am. J. Ophthalmol. 46: 102–113.PubMedGoogle Scholar
  96. Wilson, H., Levi, D., Maffei, L., Rovamo, J., and De Valois, R., 1990, The perception of form in: Visual Perception: The Neurophysiological Foundations, Academic Press, New York.Google Scholar
  97. Winfree, A. T, 1987, When Time Breaks Down, Princeton University Press, Princeton, N.J.Google Scholar
  98. Wolfson, E., and Schwartz, E. L., 1989, Computing minimal distances on arbitrary polyhedral surfaces, IEEE Trans. Pattern Anal. Mach. Intell. 11: 1001–1005.CrossRefGoogle Scholar
  99. Wright, M. J., 1987, Spatiotemporal properties of grating motion detection in the center and the periphery of the visual field, J. Opt. Soc. Am. A 4: 1627–1633.PubMedCrossRefGoogle Scholar
  100. Yap, Y. L., Levi, D. M., and Klein, S. A., 1987, Peripheral hyperacuity: Three dot bisection scales to a single factor from 0 to 10 degrees, J. Opt. Soc. Am. A 4: 1557–1561.Google Scholar
  101. Yeshurun, Y, and Schwartz, E. L., 1989, Shape description with a space-variant sensor: Algorithms for scan-path, fusion and convergence over multiple scans, IEEE Trans. Pattern Anal. Mach. Intell. 11: 1217–1222.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Eric L. Schwartz
    • 1
    • 2
  1. 1.Department of Cognitive and Neural Systems, Department of Electrical and Computer Systems, College of EngineeringBoston UniversityBostonUSA
  2. 2.Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUSA

Personalised recommendations