Advertisement

What Does in Vivo Optical Imaging Tell Us about the Primary Visual Cortex in Primates?

  • Ron D. Frostig
Part of the Cerebral Cortex book series (CECO, volume 10)

Abstract

In this chapter I will describe findings related to the functional organization of the primary visual cortex of primates, obtained by using the unique advantages of optical imaging techniques. Two optical imaging methods will be described: optical imaging using voltage-sensitive dyes and optical imaging using intrinsic signals. One method, optical imaging using voltage-sensitive dyes, excels in monitoring the temporal aspects of the functional organization of the cortex, while the other, imaging of intrinsic signals, excels in monitoring the spatial aspects. Thus, the two methods complement each other by enabling high-resolution visualization of the spatial and temporal aspects of the functional organization. This chapter will describe the imaging methods, their applications, and recent findings that have advanced our understanding of the organization of the primary visual cortex.

Keywords

Visual Cortex Optical Imaging Functional Organization Macaque Monkey Ocular Dominance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartfeld, E., and Grinvald, A., 1992, Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in the primate striate cortex, Proc. Natl. Acad. Sci. USA 89: 11905–11909.PubMedCrossRefGoogle Scholar
  2. Blasdel, G. G., 1989a, Topography of visual function as shown with voltage sensitive dyes, in: Sensory Systems in the Mammalian Brain (J. S. Lund, ed.), Oxford University Press, London, pp. 242–268.Google Scholar
  3. Blasdel, G. G., 1989b, Visualization of neuronal activity in monkey striate cortex, Annu. Rev. Physiol. 5: 561–581.CrossRefGoogle Scholar
  4. Blasdel, G. G., 1992a, Differential imaging of ocular dominance and orientation selectivity in monkey cortex, J. Neurosci. 12: 3117–3140.Google Scholar
  5. Blasdel, G. G., 1992b, Orientation selectivity, preference, and continuity in monkey striate cortex, J. Neurosci. 12: 3141–3163.Google Scholar
  6. Blasdel, G. G., and Salama, G., 1986, Voltage-sensitive dyes reveal a modular organization in monkey striate cortex, Nature 321: 579–585.PubMedCrossRefGoogle Scholar
  7. Blasdel, G. G., Yoshioka, T., Levitt, J. B., and Lund, J. S., 1992, Correlation between patterns of lateral connectivity and patterns of orientation preference in monkey striate cortex, Soc. Neurosa. Abstr. 18: 389.Google Scholar
  8. Bonhoeffer, T., and Grinvald, A., 1991, Iso-orientation domains in cat visual cortex are arranged in pinwheel like patterns, Nature 353: 429–431.PubMedCrossRefGoogle Scholar
  9. Born, R. T., and Tootell, R. B. H., 1991, Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex, Proc. Natl. Acad. Sci. USA 88: 7071–7075.PubMedCrossRefGoogle Scholar
  10. Cohen, L. B., 1973, Changes in neuron structure during action potential propagation and synaptic transmission, Physiol. Rev. 53: 373–418.PubMedGoogle Scholar
  11. Cohen, L. B., and Lesher, S., 1986, Optical monitoring of membrane potential: Methods of multisite optical measurement, Soc. Gen. Physiol. Ser. 40: 71–99.PubMedGoogle Scholar
  12. Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowe, D., Wagonner, A. S., and Wang, C. H., 1974, Changes in axon fluorescence during activity; molecular probes of membrane potential, J. Membr. Biol. 19: 1–36.PubMedCrossRefGoogle Scholar
  13. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex 1(1): 1–47.PubMedCrossRefGoogle Scholar
  14. Fisken, R. A., Garey, C. J., and Powell, I. P. S., 1975, The intrinsic, association and commissural connections of area 17 of the visual cortex, Trans. R. Soc. London Ser. B 272: 487–536.CrossRefGoogle Scholar
  15. Frostig, R. D., 1990, Optical imaging of functional changes in the visual system of anesthetized adult macaques after brief monocular occlusion, Soc. Neurosa. Abstr. 16: 42.Google Scholar
  16. Frostig, R. D., Gilbert, C. D., Ts’o, D. Y., Grinvald, A., and Wiesel, T. N., 1989, Interactions between adjacent active cortical regions in macaque visualized by optical imaging of intrinsic signals, Soc. Neurosci. Abstr. 15: 799.Google Scholar
  17. Frostig, R. D., Lieke, E. E., Ts’o, D. Y., and Grinvald, A., 1990, Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, Proc. Natl. Acad. Sci. USA 87: 6082–6086.PubMedCrossRefGoogle Scholar
  18. Frostig, R. D., Lieke, E. E., Arieli, A., Ts’o, D. Y., Hildesheim, R., and Grinvald, A., 1991, Optical imaging of neuronal activity in the living brain, in: Neuronal Cooperativity (J. Kruger, ed.), Springer-Verlag, Berlin, pp. 30–51.CrossRefGoogle Scholar
  19. Grinvald, A., 1985, Real-time optical mapping of neuronal activity: From single growth cones to the intact mammalian brain, Annu. Rev. Neurosci. 8: 263–305.PubMedCrossRefGoogle Scholar
  20. Grinvald, A., Fine, A., Farber, I. C., and Hildesheim, R., 1983, Fluorescence monitoring of electrical responses from small neurons and their processes, Biophys. J. 42: 195–198.PubMedCrossRefGoogle Scholar
  21. Grinvald, A., Anglister, L., Freeman, J. A., Hildesheim, R., and Manker, A., 1984, Real time optical imaging of naturally evoked electrical activity in the intact frog brain, Nature 308: 848–850.PubMedCrossRefGoogle Scholar
  22. Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., and Wiesel, T. N., 1986, Functional architecture of cortex revealed by optical imaging of intrinsic signals, Nature 324: 361–364.PubMedCrossRefGoogle Scholar
  23. Grinvald, A., Frostig, R. D., Lieke, E., and Hildesheim, R., 1988, Optical imaging of neuronal activity, Physiol. Rev. 68: 1285–1366.PubMedGoogle Scholar
  24. Grinvald, A., Frostig, R. D., Siegal, R., and Bartfeld, E., 1991, High resolution optical imaging of neuronal activity in awake monkey, Proc. Natl. Acad. Sci. USA 88: 11559–11563.PubMedCrossRefGoogle Scholar
  25. Grinvald, A., Bonhoeffer, T., Malonek, D., Shoham, D., Bartfeld, E., Arieli, A., Hildesheim, R., and Ratzlaff, E., 1991b, Optical imaging of architecture and function in the living brain, in: Memory: Organization and Locus of Change (L. Squire, N. M. Weinberger, G. Lynch and J. L. McGaugh, eds.), Oxford University Press, London, pp. 49–85.Google Scholar
  26. Grinvald, A., Lieke, E. E., Frostig, R. D., and Hildesheim, R., 1993, Gortical point images and long range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex, J. Neurosci., in press.Google Scholar
  27. Haglund, M. M., Ojemann, G. A., and Hochman, D. W., 1992, Optical imaging of epileptiform and functional activity in the human cerebral cortex, Nature 358: 668–671.PubMedCrossRefGoogle Scholar
  28. Horton, J. C., and Hubel, D. H., 1981, Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey, Nature 358: 668–671.Google Scholar
  29. Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interactions and functional architecture in the cat’s visual cortex, J. Physiol. (London) 160: 106–154.Google Scholar
  30. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (London) 195: 215–243.Google Scholar
  31. Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey, J. Comp. Neurol. 146: 421–450.PubMedCrossRefGoogle Scholar
  32. Hubel, D. H., and Wiesel, T. N., 1974a, Sequence regularity and geometry of orientation columns in the monkey striate cortex, J. Comp. Neurol. 158: 267–293.PubMedCrossRefGoogle Scholar
  33. Hubel, D. H., and Wiesel, T. N., 1974b, Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor, J. Comp. Neurol. 158: 295–306.PubMedCrossRefGoogle Scholar
  34. Hubel, D. H., and Wiesel, T. N., 1977, Functional architecture of macaque monkey visual cortex, Proc. R. Soc. London Ser. B 198: 1–59.CrossRefGoogle Scholar
  35. Hubel, D. H., Wiesel, T. N., and Stryker, M. P., 1978, Anatomical demonstration of orientation columns in macaque monkey, J. Comp. Neurol. 177: 361–380.PubMedCrossRefGoogle Scholar
  36. Humphrey, A. L., and Hendrickson, A. E., 1983, Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey, J. Neurosci. 3: 345–358.PubMedGoogle Scholar
  37. Kubitzer, L. A., and Kaas, J. H., 1990, Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns, Visual Neurosci. 5: 165–204.CrossRefGoogle Scholar
  38. Landisman, C. E., and Ts’o, D. Y., 1992, Color processing in the cytochrome oxidase-rich blobs and bridges of macaque striate cortex, Soc. Neurosci. Abstr. 18: 592.Google Scholar
  39. Lieke, E. E., Frostig, R. D., Ratzlaff, E. H., and Grinvald, A., 1988, Center/surround inhibitory interaction in macaque V1 revealed by real time optical imaging, Soc. Neurosci. Abstr. 14: 1122.Google Scholar
  40. Lieke, E., Frostig, R. D., Arieli, A., Ts’o, D. Y., Hildesheim, R., and Grinvald, A., 1989, Optical imaging of cortical activity: Real-time imaging using extrinsic dye signals and high resolution imaging based on slow intrinsic signals, Annu. Rev. Physiol. 51: 543–559.PubMedCrossRefGoogle Scholar
  41. Livingstone, M. S., and Hubel, D. H., 1984a, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  42. Livingstone, M. S., and Hubel, D. H., 1984b, Specificity of intrinsic connections in primate primary visual cortex, J. Neurosci. 4: 2830–2835.PubMedGoogle Scholar
  43. Loew, L. M., Cohen, L. B., Salzberg, B. M., Obaid, A. L., and Bezanilla, F., 1985, Charge shift probes of membrane potential. Characterization of aminostyrylpyridinum dyes on the squid giant axon, Biophys. J. 47: 71–77.PubMedCrossRefGoogle Scholar
  44. Lund, J. S., and Yoshioka, T., 1991, Local circuit neurons of macaque monkey striate cortex. III. Neurons of laminae 4B, 4A and 3B, J. Comp. Neurol. 311: 234–258.PubMedCrossRefGoogle Scholar
  45. McGuire, B. A., Gilbert, C. D., Rivlin, P. K., and Wiesel, T. N., 1991, Targets of horizontal connections in macaque primary visual cortex, J. Comp. Neurol. 305: 370–392.PubMedCrossRefGoogle Scholar
  46. Malach, R., Amir, E., Bartfeld, E., and Grinvald, A., 1992, Biocytin injections guided by optical imaging reveal relationships between functional architecture and intrinsic connections in monkey visual cortex, Soc. Neurosci., Abstr. 18: 389.Google Scholar
  47. Masino, S. A., Chen, C., Dory, Y., and Frostig, R. D., 1992, Optical imaging of functional organization in the rat somatosensory cortex: Representations and interactions of single vs. multiple whiskers, in: Fifth Conference on the Biology oj Learning and Memory, p. 57.Google Scholar
  48. Orbach, H. S., Cohen, L. B., and Grinvald, A., 1985, Optical mapping of electrical activity in rat somatosensory and visual cortex, J. Neurosci. 5: 1886–1895.PubMedGoogle Scholar
  49. Ratzlaff, E. H., and Grinvald, A., 1991, A tandem-lens epifluorescence macroscope: Hundred-fold brightness advantage for wide field imaging, J. Neurosci. Methods 36: 127–137.PubMedCrossRefGoogle Scholar
  50. Rockland, K. S., and Lund, J. S., 1983, Intrinsic laminar lattice connections in primate visual cortex, J. Comp. Neurol. 216: 303–318.PubMedCrossRefGoogle Scholar
  51. Roe, A. W., and Ts’o, D. Y., 1992, Functional connectivity between V1 and V2 in the primate, Soc. Neurosci. Abstr. 18: 11.Google Scholar
  52. Ross, W. N., Salzberg, B. N., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., and Chang, C. H., 1977, Changes in absorption, fluorescence, dichroism and birefringence in stained axons: Optical measurement of membrane potential, J. Mernbr. Biol. 33: 141–183.CrossRefGoogle Scholar
  53. Salzberg, B. M., Davila, H. V., and Cohen, L. B., 1973, Optical recording of impulses in individual neurones of an invertebrate central nervous system, Nature 246: 508–509.PubMedCrossRefGoogle Scholar
  54. Schoppmann, A., and Stryker, M. P., 1981, Physiological evidence that the 2-deoxyglucose method reveals orientation in cat visual cortex, Nature 293: 574–576.PubMedCrossRefGoogle Scholar
  55. Sokoloff, L., 1977, Relation between physiological function and energy metabolism in the central nervous system, J. Neurochem. 19: 13–26.CrossRefGoogle Scholar
  56. Swindale, N., 1992, A model for the coordinated development of columnar systems in primate striate cortex, Biol. Cyber. 66: 217–230.CrossRefGoogle Scholar
  57. Swindale, N. V., Matsubara, J. A., and Cynader, M. S., 1987, Surface organization of orientation and direction selectivity in cat area 18, J. Neurosci. 7: 1414–1427.PubMedGoogle Scholar
  58. Tasaki, I., Watanabe, A., Sandlin, R., and Camay, L., 1968, Changes in fluorescence, turbidity and birefringence associated with nerve excitation, Proc. Natl. Acad. Sci. USA 61: 883–888.PubMedCrossRefGoogle Scholar
  59. Tootell, R. H., Hamilton, S. L., Silverman, M. S., and Switkes, E., 1988, Functional anatomy of macaque striate cortex. I. Ocular dominance interactions, and baseline conditions, J. Neurosci. 8: 1500–1530.PubMedGoogle Scholar
  60. Ts’o, D. Y, and Gilbert, C. D., 1988, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosci. 8: 1712–1727.Google Scholar
  61. Ts’o, D. Y., Frostig, R. D., Lieke, E. E., and Grinvald, A., 1988, Functional organization of visual area 18 of macaque as revealed by optical imaging of activity-dependent intrinsic signals, Soc. Neurosci. Abstr. 14: 898.Google Scholar
  62. Ts’o, D. Y., Frostig, R. D., Lieke, E. E., and Grinvald, A., 1990, Functional organization of visual area 18 of macaque as revealed by high resolution optical imaging, Science 249: 417–420.CrossRefGoogle Scholar
  63. Van Essen, D. C., DeYoe, E. A., Olavarria, J. F., Knierim, J. J., Fox, J. M., Sagi, D., and Julesz, B., 1989, Neural responses to static and moving texture patterns in visual cortex of the macaque monkey, in: Neural Mechanisms of Visual Perception (D. M. K. Lam and C. D. Gilbert, eds.), Portfolio Publishing, Texas, pp. 137–156.Google Scholar
  64. Wong-Riley, M. T, 1979, Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry, Brain Res. 171: 11–28.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Ron D. Frostig
    • 1
  1. 1.Department of PsychobiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations