The Organization of Feedback Connections from Area V2 (18) to V1 (17)

  • Kathleen S. Rockland
Part of the Cerebral Cortex book series (CECO, volume 10)


One of the major afferent inputs to primate visual cortex is the geniculocortical system. These connections terminate mostly, although not exclusively, in subcomponents of layer 4. Because of the importance of geniculocortical connections, much of the anatomical work on the organization of area V1 (or area 17) has focused on how this input is transformed by intra- and especially interlaminar cortical processes. It has repeatedly been observed, however, that geniculocortical terminations in the monkey constitute only about 30% of the total number of synapses even in layer 4 (Peters, 1987, in Volume 6 of this series). The remaining inputs derive from a variety of intrinsic and extrinsic sources.


Macaque Monkey Apical Dendrite Middle Temporal Feedback Connection Dendritic Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral, D. G., and Price, J. L., 1984, Amygdalo-cortical projections in the monkey (Macaca fascicularis), J. Comp. Neurol. 230: 465–496.PubMedCrossRefGoogle Scholar
  2. Avendaño, C., Stepniewska, I., Rausell, E., and Reinoso-Suárez, F., 1990, Segregation and heterogeneity of thalamic cell populations projecting to superficial layers of posterior parietal cortex: A retrograde tracer study in cat and monkey, Neuroscience 3: 547–559.CrossRefGoogle Scholar
  3. Blasdel, G. G., and Fitzpatrick, D., 1984, Physiological organization of layer 4 in macaque striate cortex, J. Neurosci. 4: 880–895.PubMedGoogle Scholar
  4. Blasdel, G. G., and Lund, J. S., 1983, Termination of afferent axons in macaque striate cortex, J. Neurosci. 3: 1389–1413.PubMedGoogle Scholar
  5. Bluemcke, I., Hof, P. R., Morrison, J. H., and Celio, M. R., 1990, Comparison in the distribution of parvalbumin in the visual cortex of Old World monkeys and humans, J. Comp. Neurol. 301: 417–432.CrossRefGoogle Scholar
  6. Braak, E., 1982, On the Structure of the Human Striate Area, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  7. Bullier, J., McCourt, M. E., and Henry, G. H., 1988, Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat, Exp. Brain Res. 70: 90–98.PubMedGoogle Scholar
  8. Burkhalter, A., and Bernardo, K. L., 1989, Organization of corticocortical connections in human visual cortex, Proc. Natl. Acad. Sci. USA 86: 1071–1075.PubMedCrossRefGoogle Scholar
  9. Cauller, L. J., and Connors, B. W., 1992, Functions of very distal dendrites: Experimental and computational studies of layer I synapses on neocortical pyramidal cells, in: Single Neuron Computation (T. McKenna, J. Davis, and S. F. Zornetzer, eds.), Academic Press, New York, pp. 199–230.Google Scholar
  10. Damasio, A. R., 1989, The brain binds entities and events by multiregional activation from convergence zones, Neural Computation 1: 123–132.CrossRefGoogle Scholar
  11. Damasio, A. R., 1990, Synchronous activation in multiple cortical regions: A mechanism for recall, Semin. Neurosci. 2: 287–297.Google Scholar
  12. DeFelipe, J., Hendry, S. H. C., Hashikawa, T., Molinari, M., and Jones, E. G., 1990, A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons, Neuroscience 3: 655–673.CrossRefGoogle Scholar
  13. de Lima, A. D., and Morrison, J. H., 1989, Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey, J. Comp. Neurol. 283: 212–227.PubMedCrossRefGoogle Scholar
  14. Doty, R. W., 1983, Nongeniculate afferents to striate cortex in macaques, J. Comp. Neurol. 218: 159–173.PubMedCrossRefGoogle Scholar
  15. Douglas, K. L., and Rockland, K. S., 1992, Extensive visual feedback connections from ventral inferotemporal cortex, Soc. Neurosci. Abstr. 18: 390.Google Scholar
  16. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., and Reitboeck, H. J., 1988, Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol. Cybern. 60: 121–130.PubMedCrossRefGoogle Scholar
  17. Engel, A. K., König, P., Kreiter, A. K., Schulen, T. B., and Singer, W., 1992, Temporal coding in the visual cortex: New vistas on integration in the nervous system, Trends Neurosci. 15: 218–225.PubMedCrossRefGoogle Scholar
  18. Feldman, M. L., 1984, Morphology of the neocortical pyramidal neuron, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 123–200.Google Scholar
  19. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb Cortex 1: 1–47.PubMedCrossRefGoogle Scholar
  20. Finkel, L. H., and Edelman, G. M., 1989, Integration of distributed cortical systems by reentry: A computer simulation of interactive functionally segregated visual areas, J. Neurosci. 9: 3188–3208.PubMedGoogle Scholar
  21. Fitzpatrick, D., Lund, J. S., Schmechel, D. E., and Towles, A. C., 1987, Distribution of GABAergic neurons and axon terminals in the macaque striate cortex, J. Comp. Neurol. 264: 73–91.PubMedCrossRefGoogle Scholar
  22. Fleischhauer, K., and Laube, A., 1977, A pattern formed by preferential orientation of tangential fibres in layer I of the rabbit’s cerebral cortex, Anat. Embryol. 151: 233–240.PubMedCrossRefGoogle Scholar
  23. Florence, S. L., and Casagrande, V. A., 1987, Organization of individual afferent axons in layer IV of striate cortex in a primate, J. Neurosci. 7: 3850–3868.PubMedGoogle Scholar
  24. Foote, S. L., and Morrison, J. H., 1987, Extrathalamic modulation of neocortical function, Annu. Rev. Neurosci. 10: 67–95.PubMedCrossRefGoogle Scholar
  25. Freund, T. F., Martin, K. A. C., Soltesz, I., Somogyi, P., and Whitteridge, D., 1989, Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey, J. Comp. Neurol. 289: 315–336.PubMedCrossRefGoogle Scholar
  26. Friedman, D. P., 1983, Laminar patterns of terminations of cortico-cortical afferents in the somatosensory system, Brain Res. 273: 147–151.PubMedCrossRefGoogle Scholar
  27. Galaburda, A. M., and Pandya, D. N., 1983, The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey, J. Comp. Neurol. 221: 169–184.PubMedCrossRefGoogle Scholar
  28. Gray, C. M., and Singer, W., 1989, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci. USA 86: 1698–1702.PubMedCrossRefGoogle Scholar
  29. Hedreen, J. C, Uhl, G. R., Bacon, S. J., Fambrough, D. M., and Price, D. L., 1984, Acetylcholinesteraseimmunoreactive axonal network in monkey visual cortex, J. Comp. Neurol. 226: 246–254.PubMedCrossRefGoogle Scholar
  30. Hendry, S. H. C, Schwark, H. D., Jones, E. G., and Yan, J., 1987, Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex, J. Neurosci. 7: 1503–1519.PubMedGoogle Scholar
  31. Huntley, G. W., and Jones, E. G., 1990, Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins, J. Neurocytol. 19: 200–212.PubMedCrossRefGoogle Scholar
  32. Iwai, E., and Yukie, M., 1987, Amygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques (Macacafuscata, M. mulatta, and M. fascicularis), J. Comp. Neurol. 261: 362–387.PubMedCrossRefGoogle Scholar
  33. Kennedy, H., and Bullier, J., 1985, A double-labelling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey, J. Neurosci. 5: 2815–2830.PubMedGoogle Scholar
  34. Kosofsky, B. E., Molliver, M. E., Morrison, J. H., and Foote, S. L., 1984, The serotonin and norepinephrine innervation of primary visual cortex in the cynomolgus monkey (Macaca fascicularis), J. Comp. Neurol. 230: 168–178.PubMedCrossRefGoogle Scholar
  35. Krubitzer, L. A., and Kaas, J. H., 1989, Cortical integration of parallel pathways in the visual system of primates, Brain Res. 478: 161–165.PubMedCrossRefGoogle Scholar
  36. Krubitzer, L. A., and Kaas, J. H., 1990, Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns, Visual Neurosci. 5: 165–204.CrossRefGoogle Scholar
  37. Kuljis, R. O., and Rakic, P., 1989a, Distribution of neuropeptide Y-containing perikarya and axons in various neocortical areas in the macaque monkey, J. Comp. Neurol. 280: 383–392.PubMedCrossRefGoogle Scholar
  38. Kuljis, R. O., and Rakic, P., 1989b, Multiple types of neuropeptide Y-containing neurons in primate neocortex, J. Comp. Neurol. 280: 393–409.PubMedCrossRefGoogle Scholar
  39. Kuypers, H. G. J. M., Szwarcbart, M. K., Mishkin, M., and Roswold, H. E., 1965, Occipitotemporal corticocortical connections in the rhesus monkey, Exp. Neurol. 11: 245–262.PubMedCrossRefGoogle Scholar
  40. Livingstone, M., and Hubel, D. H., 1983, Specificity of corticocortical connections in monkey visual system, Nature 304: 531–534.PubMedCrossRefGoogle Scholar
  41. Livingstone, M., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  42. Livingstone, M., and Hubel, D. H., 1987, Connections between layer 4B of area 17 and the thick cytochrome-oxidase stripes of area 18 in the squirrel monkey, J. Neurosci. 7: 3371–3377.PubMedGoogle Scholar
  43. Lund, J. S., 1973, Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatto), J. Comp. Neurol. 147: 455–496.PubMedCrossRefGoogle Scholar
  44. Lund, J. S., Hendrickson, A. E., Ogren, M. P., and Tobin, E. A., 1981, Anatomical organization of primate visual cortex area VII, J. Comp. Neurol. 202: 19–45.PubMedCrossRefGoogle Scholar
  45. Marin-Padilla, M., 1984, Neurons of layer I. A developmental analysis, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 447–478.Google Scholar
  46. Marin-Padilla, M., 1990, Three-dimensional structural organization of layer I of the human cerebral cortex: A Golgi study, J. Comp. Neurol. 299: 89–105.PubMedCrossRefGoogle Scholar
  47. Marin-Padilla, M., 1992, Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: A unifying theory, J. Comp. Neurol. 321: 223–240.PubMedCrossRefGoogle Scholar
  48. Martin, K. A. C., and Whitteridge, D., 1984, Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat, J. Physiol. (London) 353: 463–504.Google Scholar
  49. Martin, K. A. C., Friedlander, M. J., and Alones, V, 1989, Physiological, morphological, and cytochemical characteristics of a layer 1 neuron in cat striate cortex, J. Comp. Neurol. 282: 404–414.PubMedCrossRefGoogle Scholar
  50. Maunsell, J. H. R., and Van Essen, D. C., 1983, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey, J. Neurosci. 3: 2563–2586.PubMedGoogle Scholar
  51. Mignard, M., and Malpeli, J. G., 1991, Paths of information flow through visual cortex, Science 251: 1249–1251.PubMedCrossRefGoogle Scholar
  52. Müller, C. M., 1992, A role for glial cells in activity-dependent central nervous system plasticity? Review and hypothesis, Int. Rev. Neurobiol. 34: 215–281.PubMedCrossRefGoogle Scholar
  53. Mumford, D., 1992, On the computational architecture of the neocortex. II. The role of corticocortical loops, Biol. Cybern. 66: 241–251.PubMedCrossRefGoogle Scholar
  54. Nakamura, H., Gattass, R., Desimone, R., and Ungerleider, L. G., 1991, Comparison of inputs from areas V1 and V2 to areas V4 and TEO in macaques, Soc. Neurosci. Abstr. 17: 845.Google Scholar
  55. Ogren, M. P., and Hendrickson, A. E., 1977, The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey, Brain Res. 137: 343–350.PubMedCrossRefGoogle Scholar
  56. Pandya, D. N., and Sanides, F., 1973, Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern, Z. Anat. Entwicklungsgesch. 139: 127–161.PubMedCrossRefGoogle Scholar
  57. Perkel, D. J., Bullier, J., and Kennedy, H., 1986, Topography of the afferent connectivity of area 17 in the macaque monkey: A double-labelling study, J. Comp. Neural. 253: 374–402.CrossRefGoogle Scholar
  58. Peters, A., 1987, Number of neurons and synapses in primary visual cortex, in: Cerebral Cortex, Volume 6 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 267–294.CrossRefGoogle Scholar
  59. Ramon y Cajal, S., 1911, Histologie du Système Nerveux de l’Homme et des Vertébrés, Maloine, Paris.Google Scholar
  60. Rockland, K. S., 1992, Laminar distribution of neurons projecting from area V1 to V2 in macaque and squirrel monkeys, Cereb. Cortex 2: 38–47.PubMedCrossRefGoogle Scholar
  61. Rockland, K. S., and Pandya, D. N., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.PubMedCrossRefGoogle Scholar
  62. Rockland, K. S., and Van Hoesen, G. W., 1994, Direct temporal-occipital feedback connections to striate cortex (VI) in the macaque monkey, Cereb Cortex, in press.Google Scholar
  63. Rockland, K. S., and Virga, A., 1989, Terminal arbors of individual “feedback” axons projecting from area V2 to VI in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris-leucoagglutinin, J. Comp. Neural. 285: 54–72.CrossRefGoogle Scholar
  64. Rockland, K. S., Saleem, K. S., and Tanaka, K., 1994, Divergent feedback connections from areas V4 and TEC) in the macaque, Vis. Neurosa., in press.Google Scholar
  65. Sandell, J. H., 1986, NADPH diaphorase histochemistry in the macaque striate cortex, J. Comp. Neurol. 251: 388–397.PubMedCrossRefGoogle Scholar
  66. Sandell, J. H., and Schiller, P. H., 1982, Effect of cooling area 18 on striate cortex cells in the squirrel monkey, J. Neurophysiol. 48: 38–48.PubMedGoogle Scholar
  67. Shipp, S., and Zeki, S., 1989, The organization of connections between areas V5 and V1 in macaque monkey visual cortex, Eur. J. Neurosa. 1: 309–332.CrossRefGoogle Scholar
  68. Somjen, G. G., 1987, Functions of glial cells in the cerebral cortex, in: Cerebral Cortex, Volume 6 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 1–40.CrossRefGoogle Scholar
  69. Sousa, A. P. B., Pinon, M. C. G. P., Gattass, R., and Rosa, M. G. P., 1991, Topographic organization of cortical input to striate cortex in the Cebus monkey: A fluorescent tracer study, J. Camp. Neurol. 308: 665–682.CrossRefGoogle Scholar
  70. Spatz, W. B., 1977, Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in the marmoset Gallithrix jacchus, Exp. Brain Res. 27: 559–572.PubMedCrossRefGoogle Scholar
  71. Szentágothai, J., 1978, The neuron network of the cerebral cortex: A functional interpretation, Proc. R. Soc. London Ser. B 201: 219–248.CrossRefGoogle Scholar
  72. Tigges, J., and Tigges, M., 1985, Subcortical sources of direct projections to visual cortex, in Cerebral Cortex, Volume 3 (A. Peters and E.G. Jones, eds.), Plenum Press, New York, pp. 351–378.Google Scholar
  73. Tigges, J., Spatz, W. B., and Tigges, M., 1973, Reciprocal point-to-point connections between parastriate and striate cortex in the squirrel monkey (Saimin), J. Comp. Neurol. 148: 481–490.PubMedCrossRefGoogle Scholar
  74. Tigges, J., Tigges, M., and Perachio, A. A., 1977, Gomplementary laminar terminations of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey, J. Comp. Neurol. 176: 87–100.PubMedCrossRefGoogle Scholar
  75. Tigges, J., Tigges, M., Anschel, S., Gross, N. A., Letbetter, W. D., and McBride, R. L., 1981, Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in the squirrel monkey (Saimiri), J. Comp. Neural. 202: 539–560.CrossRefGoogle Scholar
  76. Tömböl, T., 1984, Layer VI cells, in: Cerebral Cortex, Volume I (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 479–519.Google Scholar
  77. Tononi, G., Sporns, O., and Edelman, G. M., 1992, Re-entry and the problem of integrating multiple cortical areas: Simulation of dynamic integration in the visual system, Cereb. Cortex 2: 310–335.PubMedCrossRefGoogle Scholar
  78. Ullman, S., 1991, Sequence-seeking and counter-streams: A model for information processing in the cortex, Al Memo 1311, MIT.Google Scholar
  79. Ungerleider, L. G., and Desimone, R., 1986, Cortical connections of visual area MT in the macaque, J. Comp. Neurol. 248: 190–222.PubMedCrossRefGoogle Scholar
  80. Valverde, F., 1985, The organizing principles of the primary visual cortex in the monkey, in: Cerebral Cortex, Volume 3 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 207–257.Google Scholar
  81. van Brederode, J. F. M., Mulligan, K. A., and Hendrickson, A. E., 1990, Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex, J. Comp. Neurol. 298: 1–22.PubMedCrossRefGoogle Scholar
  82. Van Essen, D. C., Newsome, W. T., Maunsell, J. H. R., and Bixby, J. L., 1986, The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections, J. Cornp. Neural. 224: 451–480.CrossRefGoogle Scholar
  83. Vogt, B. A., 1991, The role of layer I in cortical function, in: Cerebral Cortex, Volume 9 (A. Peters, ed.), Plenum Press, New York, pp. 49–80.Google Scholar
  84. Walz, W., 1989, Role of glial cells in the regulation of the brain ion microenvironment, Prog. Neurobiol. 33: 309–333.PubMedCrossRefGoogle Scholar
  85. Weller, R. E., and Kaas, J. H., 1983, Retinotopic patterns of connections of area 17 with visual areas V-II and MT in macaque monkeys, J. Cornp. Neural. 220: 253–279.CrossRefGoogle Scholar
  86. Wong-Riley, M., 1978, Reciprocal connections between striate and prestriate cortex in the squirrel monkey as demonstrated by combined peroxidase histochemistry and autoradiography, Brain Res. 147: 159–164.PubMedCrossRefGoogle Scholar
  87. Zeki, S. M., 1980, A direct projection from area V1 to area V3a of rhesus monkey visual cortex, Proc. R. Sac. London Ser. B 207: 499–506.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Kathleen S. Rockland
    • 1
  1. 1.Department of NeurologyThe University of Iowa College of MedicineIowa CityUSA

Personalised recommendations