Advertisement

The Afferent, Intrinsic, and Efferent Connections of Primary Visual Cortex in Primates

  • Vivien A. Casagrande
  • Jon H. Kaas
Part of the Cerebral Cortex book series (CECO, volume 10)

Abstract

Because of its distinctive architecture, connections, and functions, primary visual cortex, area 17 or V1 of primates, can be easily identified in most mammals (Kaas, 1987). V1 (also referred to as striate cortex) is particularly distinctive in primates, and, as a result, it was the first cortical area identified histologically (see Gennari, 1782, in Fulton, 1937). V1 of most, if not all, primates has a number of conspicuous features that distinguish this structure from its homologue in other mammals. Unlike carnivores, such as cats and ferrets, almost all of the visual input relayed from the lateral geniculate nucleus (LGN) of primates terminates in V1 (Benevento and Standage, 1982; Bullier and Kennedy, 1983; see Henry, 1991, for review), and lesions of V1 produce a severe deficit known as cortical blindness (e.g., Cowey and Stoerig, 1989). In addition, visual cortex of all primates is activated by physiologically and morphologically distinguishable streams, or channels, of inputs that are relayed from the retina to V1 in a manner unique to primates (Kaas and Huerta, 1988; Casagrande and Norton, 1991). Furthermore, the intrinsic connections of V1 in primates exhibit both vertical (laminar) and areal (modular) distinctions that appear designed to create new output channels from input channels via features of internal circuitry. Finally, the output streams project to visual areas that seem to be organized in a manner unique to primates. In particular, the major cortical target of V1, the second visual area, V2, is composed of three morphologically distinct modules that are differentially activated from V1, and at least one other major target of V1, the middle temporal visual area or MT, appears to be a unique specialization of primates (Kaas and Preuss, 1993). These common features of visual cortex in primates are of particular interest because these specializations relate to vision in humans as well as other primates. In this review, we focus on common features that have been described for V1 across a variety of primate species, and therefore are most likely to be present in most or all primates. In addition, we describe differences in V1 organization across primate groups, since these differences may relate to functional specializations and adaptations in the greatly varied primate order. Features that vary across taxa, when related to behavioral niches, may provide clues as to the significance of variations. Finally, this review briefly compares V1 in primates with V1 in some nonprimates to emphasize the distinctiveness of V1 in primates.

Keywords

Visual Cortex Superior Colliculus Squirrel Monkey Lateral Geniculate Nucleus Macaque Monkey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allman, J. M., and Kaas, J. H., 1971, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus), Brain Res. 31: 85–105.PubMedCrossRefGoogle Scholar
  2. Allman, J. M., and Kaas, J. H., 1974, The organization of the second visual area (VII) in the owl monkey: A second order transformation of the visual field, Brain Res. 76: 247–265.PubMedCrossRefGoogle Scholar
  3. Allman, J. M., and Kaas, J. H., 1975, The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus), Brain Res. 100: 473–487.PubMedCrossRefGoogle Scholar
  4. Allman, J. M., and Kaas, J. H., 1976, Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey, Science 191: 572–576.PubMedCrossRefGoogle Scholar
  5. Anderson, P. A., Olavarria, J., and Van Sluyters, R. C., 1988, The overall pattern of ocular dominance bands in cat visual cortex, J. Neurosci. 8: 2183–2200.PubMedGoogle Scholar
  6. Bender, D. B., 1983, Visual activation of neurons in primate pulvinar depends on cortex but not colliculus, Brain Res. 279: 258–261.PubMedCrossRefGoogle Scholar
  7. Benevento, L. A., and Rezak, M., 1976, The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta), Brain Res., 108: 1–24.PubMedCrossRefGoogle Scholar
  8. Benevento, L. A., and Standage, G. P., 1982, Demonstration of lack of dorsal lateral geniculate nucleus input to extrastriate areas MT and visual 2 in the macaque monkey, Brain Res. 252: 161–166.PubMedCrossRefGoogle Scholar
  9. Benevento, L. A., and Yoshido, K., 1981, The afferent and efferent organization of the lateral geniculoprestriate pathways in the macaque monkey, J. Comp. Neural. 203: 455–474.CrossRefGoogle Scholar
  10. Billings-Gagliardi, S., Chan-Palay, V, and Palay, S. L., 1974, A review of lamination in area 17 of the visual cortex of Macaca mulatta, J. Neurocytol. 3: 619–6PubMedCrossRefGoogle Scholar
  11. Blasdel, G. G., and Lund, J. S., 1983, Termination of afferent axons in macaque striate cortex, J. Neurosci. 3: 1389–1413.PubMedGoogle Scholar
  12. Blasdel, G. G., Lund, J. S., and Fitzpatrick, P., 1985, Intrinsic connections of macaque striate cortex: Axonal projections of cells outside lamina 4C, J. Neurosci. 5: 3350–3369.PubMedGoogle Scholar
  13. Born, R. T, and Tootell, R. B., 1991a, Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex, Proc. Natl. Acad. Sci. USA 88: 7071–7075.PubMedCrossRefGoogle Scholar
  14. Born, R. T., and Tootell, R. B., 1991b, Spatial frequency turning of single units in macaque supragranular striate cortex, Proc. Natl. Acad. Sci. USA 88: 7066–7070.PubMedCrossRefGoogle Scholar
  15. Braak, H., 1984, Architectonics as seen by lipofuscin stains, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 59–104.Google Scholar
  16. Brodmann, K., 1909, Vergleichende Lokalisationlehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, J. A. Barth, Leipzig.Google Scholar
  17. Brunso-Bechtold, J. K., Florence, S. L., and Casagrande, V. A., 1983, The role of retinogeniculate afferents in the development of connections between visual cortex and the dorsal lateral geniculate nucleus, Dev. Brain Res. 10: 33–39.CrossRefGoogle Scholar
  18. Bullier, J., and Kennedy, H., 1983, Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey, Exp. Brain Res. 53: 168–172.PubMedCrossRefGoogle Scholar
  19. Burkhalter, A., and Bernardo, K. L., 1989, Organization of corticocortical connections in human visual cortex, Proc. Natl. Acad. Sa. USA 89: 1071–1075.CrossRefGoogle Scholar
  20. Burkhalter, A., and Charles, V., 1990, Organization of local axon collaterals of efferent projection neurons in rat visual cortex, J. Comp. Neurol. 302: 920–934.PubMedCrossRefGoogle Scholar
  21. Burkhalter, A., Felleman, D. J., Newsome, W. T, and Van Essen, D. C., 1986, Anatomical and physiological asymmetries related to visual area V3 and VP in macaque extrastriate cortex, Vision Res. 26: 63–80.PubMedCrossRefGoogle Scholar
  22. Carey, R. G., Fitzpatrick, D., and Diamond, I. T., 1979, Layer I of striate cortex of Tupaia glis and Galago senegalensis: Projections from thalamus and claustrum revealed by retrograde transport of horseradish peroxidase, J. Comp. Neurol. 186: 393–438.PubMedCrossRefGoogle Scholar
  23. Carroll, E. W., and Wong-Riley, M. T. T., 1984, Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey, J. Comp. Neurol. 222: 1–17.PubMedCrossRefGoogle Scholar
  24. Casagrande, V. A., and DeBruyn, E. J., 1982, The galago visual system: Aspects of normal organization and developmental plasticity, in: The Lesser Bushbaby (Galago) as an Animal Model: Selected Topics (D. E. Haines, ed.), CRC Press, Boca Raton, Fla., pp. 137–168.Google Scholar
  25. Casagrande, V. A., and Harting, J. K., 1975, Transneuronal transport of tritiated fucose and proline in the visual pathways of tree shrew (Tupaia glis), Brain Res. 96: 367–372.PubMedCrossRefGoogle Scholar
  26. Casagrande, V. A., and Norton, J. T., 1991, Lateral geniculate nucleus: A review of its physiology and function, in: Electrophysiology of Vision (A. G. Leventhal, ed.), Macmillan Press, London, pp. 41–84.Google Scholar
  27. Casagrande, V. A., Mavity-Hudson, J. A., and Taylor, J. G., 1992, Intrinsic connections of owl monkey cortex: Difference between cytochrome oxidase (CO) blobs and interblobs, Soc. Neurosci. Abstr. 18: 389.Google Scholar
  28. Chaudhuri, A., Dyck, A., Matsubara, J. A., and Cynader, M. S., 1992, Ocular dominance columns in monkey striate cortex revealed by activity-dependent expression of zif 268, Soc. Neurosci. Abstr. 18: 209.Google Scholar
  29. Claps, A., and Casagrande, V. A., 1990, The distribution and morphology of corticogeniculate axons in ferrets, Brain Res. 530: 126–129.PubMedCrossRefGoogle Scholar
  30. Clark, W. E. L. G., 1925, The visual cortex of primates, J. Anat. (London) 59: 350–357.Google Scholar
  31. Clark, S., and Miklossy, J., 1990, Occipital cortex in man: Organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas, J. Comp. Nenrol. 298: 188–214.CrossRefGoogle Scholar
  32. Clarke, P. G. H., and Whitteridge, D., 1976, The cortical visual areas of sheep, J. Physiol. (London) 256: 497–508.Google Scholar
  33. Clarke, P. G., Donaldson, I. M., and Whitteridge, D., 1976, Binocular visual mechanisms in cortical areas I and II of the sheep, J. Physiol. (London) 256: 509–526.Google Scholar
  34. Colby, C. L., Gattass, R., Olson, C. R., and Gross, C. G., 1988, Topographical organization cortical afferents to extrastriate area PO in the macaque: A dual tracer study, J. Comp. Neurol. 269: 392–413.PubMedCrossRefGoogle Scholar
  35. Colonnier, M., and Sas, E., 1978, An anterograde degeneration study of the tangential spread of axons in cortical areas 17 and 18 of the squirrel monkey (Saimiri sciureus), J. Comp. Neurol. 179: 245–262.PubMedCrossRefGoogle Scholar
  36. Condo, G. J., and Casagrande, V. A., 1990, Organization of cytochrome oxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis): I. Adult patterns, J. Comp. Neurol. 293: 632–645.PubMedCrossRefGoogle Scholar
  37. Conley, M., Fitzpatrick, D., and Diamond, I. T., 1984, The laminar organization of the lateral geniculate body and the striate cortex in the tree shrew (Tupaia glis), J. Neurosci. 4: 171–198.PubMedGoogle Scholar
  38. Connolly, M., and Van Essen, D., 1984, The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey, J. Comp. Neurol. 226: 544–564.PubMedCrossRefGoogle Scholar
  39. Conway, J. L., and Schiller, P. H., 1983, Laminar organization of the tree shrew lateral geniculate nucleus, J. Neurophysiol. 50: 1330–1342.PubMedGoogle Scholar
  40. Cowey, A., and Stoerig, P., 1989. Projection patterns of surviving neurons in the dorsal lateral geniculate nucleus following discrete lesions of striate cortex: Implications for residual vision, Exp. Brain Res. 75: 631–638.PubMedCrossRefGoogle Scholar
  41. Cragg, B. G., 1969, The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method, Vision Res. 9: 733–747.PubMedCrossRefGoogle Scholar
  42. Cresho, H. S., Rasco, L. M., Rose, G. H., and Condo, G. J., 1992, Blob-like pattern of cytochrome oxidase staining in ferret visual cortex, Soc. Neurosci. Abstr. 18: 298.Google Scholar
  43. Cusick, C. G., and Kaas, J. H., 1986a, Interhemispheric connections of cortical, sensory and motor maps in primates, in: Two Hemispheres—One Brain (M. P. F. Lepore and H. H. Jasper, eds.), Liss, New York, pp. 83–102.Google Scholar
  44. Cusick, C. G., and Kaas, J. H., 1986b, Interhemispheric connections of cortical connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus), J. Comp. Neurol. 230: 311–336.CrossRefGoogle Scholar
  45. Cusick, C. G., and Kaas, J. H., 1988a, Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkey, Visual Neurosci. 1: 211–237.CrossRefGoogle Scholar
  46. Cusick, C. G., and Kaas, J. H., 1988b, Surface view patterns of intrinsic and extrinsic cortical connections of area 17 in a prosimian primate, Brain Res. 458: 383–388.PubMedCrossRefGoogle Scholar
  47. Cusick, C. G., Gould, H. J., III, and Kaas, J. H., 1984, Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos(Galago crassicaudatus), J. Comp. Neurol. 230: 311–336.PubMedCrossRefGoogle Scholar
  48. DeBruyn, E. J., and Casagrande, V. A., 1981, Demonstration of ocular dominance columns in a New World primate by means of monocular deprivation, Brain Res. 207: 453–458.PubMedCrossRefGoogle Scholar
  49. DeBruyn, E. J., Casagrande, V. A., Beck, P. D., and Bonds, A. B., 1993, Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby), J. Neurophysiol. 69: 3–18.PubMedGoogle Scholar
  50. Desimone, R., Wessinger, M., Thomas, L., and Schneider, W., 1990, Attentional control of visual perception: Cortical and subcortical mechanisms, Cold Spring Harbor Symp. Quant. Biol. 55: 963–971.PubMedCrossRefGoogle Scholar
  51. DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive-field properties in visual area V2 of the macaque, Nature 317: 58–61.PubMedCrossRefGoogle Scholar
  52. DeYoe, E. A., Hockfield, S., Garren, H., and Van Essen, D. C., 1990, Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey, Visual Neurosci. 5: 67–81.CrossRefGoogle Scholar
  53. Diamond, I. T., Conley, M., Itoh, K., and Fitzpatrick, D., 1985, Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus, J. Comp. Neurol. 242: 584–610.PubMedCrossRefGoogle Scholar
  54. Dick, A., Kaske, A., and Creutzfeldt, O. D., 1991, Topographical and topological organization of the thalamocortical projection to the striate and prestriate cortex in the marmoset (Callithrix jacchus), Exp. Brain Res. 84: 233–253.PubMedCrossRefGoogle Scholar
  55. Dräger, U. C., 1974, Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice, Brain Res. 82: 284–292.PubMedCrossRefGoogle Scholar
  56. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex 1: 1–47.PubMedCrossRefGoogle Scholar
  57. Ferster, D., and LeVay, S., 1978, The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat, J. Comp. Neurol. 182: 923–944.PubMedCrossRefGoogle Scholar
  58. Fitzpatrick, D., Itoh, K., and Diamond, I. T., 1983, The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus), J. Neurosci. 3: 673–702.PubMedGoogle Scholar
  59. Fitzpatrick, D., Lund, J. S., and Blasdel, G. G., 1985, Intrinsic connections of macaque striate cortex. Afferent and efferent connections of lamina 4C, J. Neurosci. 5: 3329–3349.PubMedGoogle Scholar
  60. Florence, S. L., and Casagrande, V. A., 1987, The organization of individual afferent axons in layer IV of striate cortex of a primate (Galago senegalensis), J. Neurosci. 7: 3850–3868.PubMedGoogle Scholar
  61. Florence, S. L., and Casagrande, V. A., 1990, The development of geniculocortical axon arbors in a primate, Visual Neurosci. 5: 291–311.CrossRefGoogle Scholar
  62. Florence, S. L., and Kaas, J. H., 1992. Ocular dominance columns in area 17 of Old World macaque and talapoin monkeys: Complete reconstructions and quantitative analyses, Visual Neurosci. 8: 449–462.CrossRefGoogle Scholar
  63. Florence, S. L., Sesma, M. A., and Casagrande, V. A., 1983, Morphology of geniculo-striate afferents in a prosimian primate, Brain Res. 270: 127–130.PubMedCrossRefGoogle Scholar
  64. Florence, S. L., Conley, M., and Casagrande, V. A., 1986, Ocular dominance columns and retinal projections in New World spider monkeys (Ateles ater), J. Comp. Neurol. 243: 234–248.PubMedCrossRefGoogle Scholar
  65. Freund, T. F., Martin, K. A., Soltesz, I., Somogyi, P., and Whitteridge, D., 1989, Arborization pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey, J. Comp. Neurol. 289: 315–336.PubMedCrossRefGoogle Scholar
  66. Fries, W., Keizer, K., and Kuypers, H. G. J. M., 1985, Large layer V1 cells in macaque striate cortex (Meynert cells) project to both superior colliculus and prestriate area V5, Exp. Brain Res. 58: 613–616.PubMedCrossRefGoogle Scholar
  67. Fulton, J. F., 1937, A note on Francesco Gennari and the early history of cytoarchitectural studies of the cerebral cortex, Bull. Inst. Hist. Med. 5: 895–913.Google Scholar
  68. Garey, L.J., 1971, A light and electron microscopic study of the visual cortex of the cat and monkey, Proc. R. Soc. London Ser. B 179: 21–40.CrossRefGoogle Scholar
  69. Gattass, R., Gross, C. G., and Sandell, J. H., 1981, Visual topography of V2 in the macaque, J. Comp. Neurol. 201: 519–539.PubMedCrossRefGoogle Scholar
  70. Gattass, R., Sousa, A. P., and Gross, C. G., 1988, Visuotopic organization and extent of V3 and V4 of the macaque, J. Neurosci. 8: 1831–1845.PubMedGoogle Scholar
  71. Gilbert, C. D., and Wiesel, T. N., 1981, Laminar specialization and intracortical connections in cat primary cortex, in: Organization of the Cerebral Cortex (F. O. Schmitt, F. G. Worden, G. Adelman, and S. G., Dennis, eds.), MIT Press, Cambridge, Mass., pp. 163–191.Google Scholar
  72. Gilbert, C. D., and Wiesel, T. N., 1989, Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex, J. Neurosci. 9: 2432–2442.PubMedGoogle Scholar
  73. Gilbert, C. D., Hirsch, J. A., and Wiesel, T. N., 1991, Lateral interactions in visual cortex, Cold Spring Harbor Symp. Quant. Biol. 55: 663–677.CrossRefGoogle Scholar
  74. Glendenning, K. K., Kofron, E. A., and Diamond, I. T., 1976, Laminar organization of projections of the lateral geniculate nucleus to the striate cortex in Galago, Brain Res. 105: 538–546.PubMedCrossRefGoogle Scholar
  75. Glickstein, M., Cohen, J. L., Dixon, B., Gibson, A., Hollins, M., Labossiere, E., and Robinson, F., 1980, Corticopontine visual projections in macaque monkey, J. Comp. Neurol. 190: 521–541.CrossRefGoogle Scholar
  76. Goodale, M. A., and Milner, A. D., 1992, Separate visual pathways for perception and action, Trends Neurosci. 15: 20–25.PubMedCrossRefGoogle Scholar
  77. Gould, H. U., Weber, J. T., and Rieck, R. W., 1987, Interhemispheric connections in the visual cortex of the squirrel monkey (Saimiri sciureus), J. Comp. Neurol. 256: 14–28.PubMedCrossRefGoogle Scholar
  78. Graham, J., 1982, Some topographical connections of the striate cortex with subcortical structures in Macaca fascicularis, Exp. Brain Res. 47: 1–14.PubMedCrossRefGoogle Scholar
  79. Graham, J., Lin, C., and Kaas, J. H., 1979, Subcortical projections of six visual cortical areas in the owl monkey (Aotus trivirgatus), J. Comp. Neurol. 187: 557–580.PubMedCrossRefGoogle Scholar
  80. Harting, J. K., Diamond, T. T., and Hall, W. C., 1973, Anterograde degeneration study of the cortical projections of the lateral geniculate and pulvinar nuclei in the tree shrew (Tupaia glis), J. Comp. Neurol. 150: 393–440.PubMedCrossRefGoogle Scholar
  81. Harting, J. K., Casagrande, V. A., and Weber, J. T., 1978, The projection of the primate superior colliculus upon the dorsal lateral geniculate nucleus: Autoradiographic demonstration of inter-laminar distribution of tectogeniculate axons, Brain Res. 150: 593–599.PubMedCrossRefGoogle Scholar
  82. Hässler, R., 1967, Comparative anatomy of the central visual systems in day-and night-active primates, in: Evolution of the Forebrain (R. Hässler and S. Stephen, eds.), Thieme, Stuttgart, pp. 419–434.Google Scholar
  83. Hendrickson, A. E., Wilson, J. R., and Ogren, M. P., 1978, The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates, J. Comp. Neurol. 182: 123–136.PubMedCrossRefGoogle Scholar
  84. Henry, G. H., 1991, Afferent inputs, receptive field properties and morphological cell types in different layers, in: Vision and Visual Dysfunction, Volume 4 (A. G. Leventhal, ed.), Macmillan Press, London, pp. 223–240.Google Scholar
  85. Hess, D. T., and Edwards, M. A., 1987, Anatomical demonstration of ocular segregation in the retinogeniculocortical pathway of the New World capuchin monkey (Cebus apella), J. Comp. Neurol. 264: 409–420.PubMedCrossRefGoogle Scholar
  86. Hitchcock, P. F., and Hickey, T. L., 1980, Ocular dominance columns: Evidence for their presence in humans, Brain Res. 182: 176–179.PubMedCrossRefGoogle Scholar
  87. Hockfield, S., McKay, R. D. G., Hendry, S. H. C., and Jones, E. G., 1983, A surface antigen that identifies ocular dominance columns in the visual cortex and laminar features of the lateral geniculate nucleus, Cold Spring Harbor Symp. Quant. Biol. 48: 877–889.PubMedCrossRefGoogle Scholar
  88. Hoffman, K.-P., Distler, C., and Erickson, R., 1991. Functional projections from striate cortex and superior temporal sulcus to the nucleus of the optic tract (NOT) and the dorsal terminal nucleus of the accessory optic (DTN) of macaque monkeys, J. Comp. Neurol. 313: 707–724.CrossRefGoogle Scholar
  89. Holdefer, R. N., and Norton, T. T., 1986, Laminar organization of receptive-field properties in the lateral geniculate nucleus of the tree shrew, Soc. Neurosci. Abstr. 12: 8.Google Scholar
  90. Horton, J. C., 1984, Cytochrome oxidase patches: A new cytoarchitectonic feature of monkey visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 199–253.CrossRefGoogle Scholar
  91. Horton, J. C., and Hedley-Whyte, E. T., 1984, Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 255–272.CrossRefGoogle Scholar
  92. Horton, J. C., and Hubel, D. H., 1981, Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey, Nature 292: 762–764.PubMedCrossRefGoogle Scholar
  93. Hubel, D. H., 1975, An autoradiographic study of the retino-cortical projections in the tree shrew (Tupaia glis), Brain Res. 96: 41–50.PubMedCrossRefGoogle Scholar
  94. Hubel, D. H., and Livingstone, M. S., 1990, Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey, J. Neurosci. 10: 2223–2237.PubMedGoogle Scholar
  95. Hubel, D. H., and Wiesel, T. N., 1978, Distribution of inputs from the two eyes to striate cortex of squirrel monkeys (abstract), Soc. Neurosci. 4: 632.Google Scholar
  96. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (London) 195: 215–243.Google Scholar
  97. Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculocortical fibers in macaque monkey, J. Comp. Neurol. 146: 421–450.PubMedCrossRefGoogle Scholar
  98. Huerta, M. F., and Harting, J. K., 1984, The mammalian superior colliculus: Studies of its morphology and connections, in: Comparative Neurology of the Optic Tectum (H. Vanegas, ed.), Plenum Press, New York, pp. 687–773.Google Scholar
  99. Humphrey, A. L., and Hendrickson, A. E., 1983, Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey, J. Neurosci. 3: 345–358.PubMedGoogle Scholar
  100. Humphrey, A. L., Sur, M., Ulrich, D. J., and Sherman, S. M., 1985a, Termination patterns of individual X-and Y-cell axons in the visual cortex of the cat: Projections to area 18, to the 17/18 border region, and to both areas 17 and 18, J. Comp. Neurol. 233: 190–212.PubMedCrossRefGoogle Scholar
  101. Humphrey, A. L., Sur, M., Ulrich, D. J., and Sherman, S. M., 1985b, Projection patterns of individual X-and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat, J. Comp. Neurol. 233: 159–189.PubMedCrossRefGoogle Scholar
  102. Irvin, G. E., Norton, T. T., Sesma, M. A., and Casagrande, V. A., 1986, W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago crassicaudatus), Brain Res. 363: 254–274.CrossRefGoogle Scholar
  103. Kaas, J. H., 1986, The structural basis for information processing in the primate visual system, in: Visual Neuroscience (J. D. Pettigrew and J. Sanderson, eds.), Cambridge University Press, London, pp. 315–340.Google Scholar
  104. Kaas, J. H., 1987, The organization of neocortex in mammals: Implications for theories of brain function, Annu. Rev. Psychol. 38: 129–151.PubMedCrossRefGoogle Scholar
  105. Kaas, J. H., 1988, Development of cortical sensory maps, in: Neurobiology of Neocortex (P. Rakic and W. Singer, eds.), Wiley, New York, pp. 101–113.Google Scholar
  106. Kaas, J. H., 1992, Do humans see what monkeys see? Trends Neurosci. 15: 1–3.PubMedCrossRefGoogle Scholar
  107. Kaas, J. H., 1993, The organization of visual cortex in primates: Problems, conclusions, and the use of comparative studies in understanding the human brain, in: The Functional Organization of the Human Visual Cortex (B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, pp. 1–11.Google Scholar
  108. Kaas, J. H., and Huerta, M. F., 1988, Subcortical visual system of primates, in: Comparative Primate Biology, Volume 4 (H. P. Steklis, ed.), Liss, New York, pp. 327–391.Google Scholar
  109. Kaas, J. H., and Krubitzer, L. A., 1992, Area 17 lesions deactivate area MT in owl monkeys, Visual Neurosci. 9: 399–407.CrossRefGoogle Scholar
  110. Kaas, J. H., and Morel, A., 1993, Connections of visual areas of the upper temporal lobe of owl monkeys: The MT crescent and dorsal and ventral subdivisions of FST, J. Neurosci. 13: 534–546.PubMedGoogle Scholar
  111. Kaas, J. H., and Preuss, T. M., 1993, Archonton affinities as reflected in the visual system, in: Mammal Phylogeny (F. Szulay, M. Novacek, and M. McKenna, eds.), Springer-Verlag, New York, pp. 115–128.CrossRefGoogle Scholar
  112. Kaas, J. H., Lin, C.-S., and Casagrande, V. A., 1976, The relay of ipsilateral and contralateral retinal input from the lateral geniculate nucleus to striate cortex in the owl monkey: A transneuronal transport study, Brain Res. 106: 371–378.PubMedCrossRefGoogle Scholar
  113. Kaas, J. H., Nelson, R. J., Sur, M., Lin, C.-S., and Merzenich, M. M., 1979, Multiple representations of the body within the primary somatosensory cortex of primates, Science 204: 521–523.PubMedCrossRefGoogle Scholar
  114. Kageyama, G. H., and Wong-Riley, M., 1986, Laminar and cellular localization of cytochrome oxidase in the cat striate cortex, J. Comp. Neurol. 245: 137–159.PubMedCrossRefGoogle Scholar
  115. Kennedy, H., and Bullier, J. C., 1985, A double-labelling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey, J. Neurosci. 5: 2815–2830.PubMedGoogle Scholar
  116. Kennedy, H., and Dehay, C., 1988, Functional implications of the anatomical organization of the callosal projections of visual areas V1 and V2 in the macaque monkey, Behav. Brain Res. 29: 225–236.PubMedCrossRefGoogle Scholar
  117. Kennedy, H., Bullier, J., and Dehay, C., 1985, Cytochrome oxidase activity in the striate cortex and lateral geniculate nucleus of the newborn and adult macaque monkey, Exp. Brain Res. 61: 204–209.PubMedCrossRefGoogle Scholar
  118. Kennedy, H., Dehay, C., and Bullier, J., 1986, Organization of the callosal connections of visual areas V1 and V2 in the macaque monkey, J. Comp. Neurol. 247: 398–415.PubMedCrossRefGoogle Scholar
  119. Krubitzer, L. A., and Kaas, J. H., 1989, Cortical integration of parallel pathways in the visual system of primates, Brain Res. 478: 161–165.PubMedCrossRefGoogle Scholar
  120. Krubitzer, L. A., and Kaas, J. H., 1990a, Convergence of processing channels in the extrastriate cortex of monkeys, Visual Neurosci. 5: 609–613.CrossRefGoogle Scholar
  121. Krubitzer, L. A., and Kaas, J. H., 1990b, Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns, Visual Neurosci. 5: 165–204.CrossRefGoogle Scholar
  122. Krubitzer, L. A., and Kaas, J. H., 1993, The dorsomedial visual area (DM) of owl monkeys: Connections, myeloarchitecture, and homologies in other primates, J. Comp. Neurol., 334: 497–528.PubMedCrossRefGoogle Scholar
  123. Kuypers, H. G., Szwarcbart, M. K., Mishkin, M., and Rosvold, H. E., 1965, Occipitotemporal corticocortical connections in the rhesus monkey, Exp. Neurol. 11: 245–262.PubMedCrossRefGoogle Scholar
  124. Lachica, E. A., and Casagrande, V. A., 1992, Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: Axon morphology, J. Comp. Neurol. 319: 141–159.PubMedCrossRefGoogle Scholar
  125. Lachica, E. A., and Casagrande, V. S., 1993, The morphology of collicular and retinal axons ending on small relay (W-like) cells of the primate lateral geniculate nucleus, Visual Neurosci., in press.Google Scholar
  126. Lachica, E. A., Hutchins, J. B., and Casagrande, V. A., 1987, Morphology of corticogeniculate axon arbors in a primate, Soc. Neurosci. Abstr. 13: 1434.Google Scholar
  127. Lachica, E. A., Beck, P., and Casagrande, V. A., 1992, Parallel pathways in macaque monkey striate cortex: Anatonomically defined columns in layer III, Proc. Natl. Acad. Sci. USA 89: 3566–3570.PubMedCrossRefGoogle Scholar
  128. Lachica, E. A., Beck, P. D., and Casagrande, V. A., 1993, Intrinsic connections of layer III of striate cortex in squirrel monkey and bush baby: Correlations with patterns of cytochrome oxidase, J. Comp. Neurol., in press.Google Scholar
  129. Langston, A. L., Casagrande, V. A., and Fox, R., 1986, Spatial resolution of the galago, Vision Res. 26: 791–796.PubMedCrossRefGoogle Scholar
  130. LeVay, S., 1988, The patchy intrinsic projections of visual cortex, Prog. Brain Res. 75: 147–161.PubMedCrossRefGoogle Scholar
  131. LeVay, S., and Gilbert, C. D., 1976, Laminar patterns of geniculocortical projections in the cat, Brain Res. 113: 1–19.PubMedCrossRefGoogle Scholar
  132. LeVay, S., Connolly, M., Houde, J., and Van Essen, D. C., 1985, The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey, J. Neurosci. 5: 486–501.PubMedGoogle Scholar
  133. LeVay, S., McConnell, S. K., and Luskin, M. G., 1987, Functional organization of primary visual cortex in the mink (Mustela vison) and a comparison with the cat, J. Comp. Neurol. 257: 422–441.PubMedCrossRefGoogle Scholar
  134. Lin, C.-S., and Kaas, J. H., 1979, The inferior pulvinar complex in owl monkeys: Architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex, J. Comp. Neurol. 187: 655–678.PubMedCrossRefGoogle Scholar
  135. Lin, C.-S., Weiler, R. E., and Kaas, J. H., 1982, Cortical connections of striate cortex in the owl monkey, J. Comp. Neurol. 211: 165–176.PubMedCrossRefGoogle Scholar
  136. Livingstone, M. S., and Hubel, D. H., 1982, Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Natl. Acad. Sci. USA 79: 6098–6101.PubMedCrossRefGoogle Scholar
  137. Livingstone, M. S., and Hubel, D. H., 1984a, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  138. Livingstone, M. S., and Hubel, D. H., 1984b, Specificity of intrinsic connections in primate primary visual cortex, J. Neurosci. 4: 2830–2835.PubMedGoogle Scholar
  139. Livingstone, M. S., and Hubel, D. H., 1987, Connections between layer 4B of area 17 and thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci. 7: 3371–3377.PubMedGoogle Scholar
  140. Livingstone, M., and Hubel, D., 1988, Segregation of form, color, movement, and depth: Anatomy, physiology, and perception, Science 240: 740–749.PubMedCrossRefGoogle Scholar
  141. Löwel, S., and Singer, W., 1987, The pattern of ocular dominance columns in flat-mounts of the cat visual cortex, Exp. Brain Res. 68: 661–666.PubMedCrossRefGoogle Scholar
  142. Lund, J. S., 1987, Local circuit neurons of macaque monkey striate cortex: I. Neurons of laminae 4C and 5A, J. Comp. Neurol. 257: 60–92.PubMedCrossRefGoogle Scholar
  143. Lund, J. S., 1988, Anatomical organization of macaque monkey striate visual cortex, Annu. Rev. Neurosci. 11: 253–288.PubMedCrossRefGoogle Scholar
  144. Lund, J. S., 1990, Excitatory and inhibitory circuitry and laminar mapping strategies in the primary visual cortex of the monkey, in: Signal and Sense: Local and Global Order in Perceptual Maps (G. M. Edelman, W. E. Gall, and W. M. Cowan, eds), Wiley, New York, pp. 51–66.Google Scholar
  145. Lund, J. S., and Yoshioka, T, 1991, Local circuit neurons of macaque monkey striate cortex: III. Neurons of laminae 4B, 4A, and 3B, J. Comp. Neurol. 311: 234–258.PubMedCrossRefGoogle Scholar
  146. Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., and Fuchs, A. F., 1975, The origin of afferent pathways from the primary cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase, J. Comp. Neurol. 164: 287–304.PubMedCrossRefGoogle Scholar
  147. Lund, J. S., Henry, G. H., MacQueen, C. L., and Harvey, A. R., 1979, Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey, J. Comp. Neurol. 184: 599–618.PubMedCrossRefGoogle Scholar
  148. Lund, J. S., Hendrickson, A. E., Ogren, M. P., and Tobin, E. A., 1981, Anatomical organization of primate visual cortex area VII, J. Comp. Neurol. 202: 19–45.PubMedCrossRefGoogle Scholar
  149. Lund, J. S., Hawken, M. J., and Parker, A. J., 1988, Local circuit neurons of macaque monkey striate cortex: II. Neurons of laminae 5B and 5, J. Comp. Neurol. 276: 1–29.PubMedCrossRefGoogle Scholar
  150. McGuiness, E., McDonald, C., Sereno, M., and Allman, J. M., 1986, Primates without blobs: The distribution of cytochrome oxidase activity in Tarsius, Hapalemur, and Cheirogaleus, Soc. Neurosci. Abstr. 12: 13Google Scholar
  151. Malach, P., Amin, Y, Bartfeld, E., and Grinvald, A., 1992, Biocytin injections guided by optical imaging reveal relationships between functional architecture and intrinsic connections in monkey visual cortex, Soc. Neurosci. Abstr. 18: 389.Google Scholar
  152. Malpeli, J. G., Schiller, P. H., and Colby, C. L., 1981, Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae, J. Neurophysiol. 46: 1102–1119.PubMedGoogle Scholar
  153. Martin, K. A. C., 1992, Parallel pathways converge: Recent results raise doubts about the popular view that different aspects of vision, such as form, colour and motion, are processed through separate, parallel pathways in the brain, Vis. Cortex 2: 555–557.Google Scholar
  154. Maunsell, J. H. R., and Van Essen, D. C., 1983, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey, J. Neurosci. 3: 2563–2586.PubMedGoogle Scholar
  155. Maunsell, J. H. R., and Van Essen, D. C., 1987, Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries, J. Comp. Neurol. 266: 535–555.PubMedCrossRefGoogle Scholar
  156. Maunsell, J. H. R., Nealey, T A., and DePriest, D. D., 1990, Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey, J. Neurosci. 10: 3323–3334.PubMedGoogle Scholar
  157. Maunsell, J. H. R., Nealey, T. A., and Ferrera, V. P., 1992, Magnocellular and parvocellular contributions to neuronal responses in monkey visual cortex, Invest. Ophthalmol. Vis. Sci. Suppl. 33: 901.Google Scholar
  158. Merigan, W. H., and Maunsell, J. H. R., 1993, How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16: 369–402.PubMedCrossRefGoogle Scholar
  159. Miklossy, J., 1992, Thalamocortical connections and rostral visual areas in man, in: The Functional Organization of the Human Visual Cortex (B. Gulyas, D. Ohoson, and P. E. Rowland, eds.), Pergamon Press, Oxford, pp. 123–136.Google Scholar
  160. Montero, V. M., 1980, Patterns of connections from the striate cortex to cortical visual areas in superior temporal sulcus of macaque and middle temporal gyrus of owl monkey, J. Comp. Neurol. 189: 45–59.PubMedCrossRefGoogle Scholar
  161. Muly, E. C., and Fitzpatrick, D., 1992, The morphological basis for binocular and ON/OFF convergence in tree shrew striate cortex, J. Neurosci. 12: 1319–1334.PubMedGoogle Scholar
  162. Murphy, K. M., Van Sluyters, R. C., and Jones, D. G., 1991, The organization of cytochrome-oxidase blobs in cat visual cortex, Soc. Neurosci. Abstr. 18: 1088.Google Scholar
  163. Myers, R. E., 1965, The neocortical commissures and interhemispheric transmission of information, in: Functions of the Corpus Callosum (E. G. Ettinger, ed.), Little, Brown, Boston, pp. 1–17, 133-193.Google Scholar
  164. Nealey, T. A., and Maunsell, J. H. R., 1991, Magnocellular contributions to the superficial layers, Suppl. Invest. Opthal. Vis. Sci. 32: 1117.Google Scholar
  165. Newsome, W. T, and Allman, J. M., 1980, Interhemispheric connections of visual cortex in the owl monkey, Aotus tnvirgatus, and the bushbaby Galago senegalensis, J. Comp. Neurol. 194: 209–233.CrossRefGoogle Scholar
  166. Norton, T. T., and Casagrande, V. A., 1982, Laminar organization of receptive-field properties in lateral geniculate nucleus of bush baby (Galago crassicaudatus), J. Neurophysiol. 47: 715–741.PubMedGoogle Scholar
  167. Norton, T. T., Casagrande, V. A., Irvin, G. E., Sesma, M. A., and Petry, H. M., 1988, Contrast-sensitivity functions of W-, X-, and Y-like relay cells in the lateral geniculate nucleus of bush baby, Galago crassicaudatus, J. Neurophysiol. 59: 1639–1656.Google Scholar
  168. Ogren, M. P., and Hendrickson, A. E., 1977, The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey, Brain Res. 137: 343–350.PubMedCrossRefGoogle Scholar
  169. O’Leary, D. D., and Stanfield, B. B., 1985, Occipital cortical neurons with transient pyramidal tract axons extend and maintain collaterals to subcortical but not intracortical targets, Brain Res. 336: 326–333.PubMedCrossRefGoogle Scholar
  170. Perkel, D. J., Bullier, J., and Kennedy, H., 1986, Topography of the afferent connectivity of area 17 in the macaque monkey: A double-labelling study, J. Comp. Neurol. 253: 374–402.PubMedCrossRefGoogle Scholar
  171. Peters, A., and Sethares, C, 1991a, Layer IVA of rhesus monkey primary visual cortex, Cereb. Cortex 1: 495–462.CrossRefGoogle Scholar
  172. Peters, A., and Sethares, C., 1991b, Organization of pyramidal neurons in area 17 of monkey visual cortex, J. Comp. Neurol. 306: 1–23.PubMedCrossRefGoogle Scholar
  173. Pettigrew, J. D., Ramachandran, V. S., and Bravo, H., 1984, Some neural connections subserving binocular vision in ungulates, Brain Behav. Evol. 24: 65–93.PubMedCrossRefGoogle Scholar
  174. Pospical, M. W., Florence, S. L., and Kaas, J. H., 1994, The postnatal development of geniculocortical axon arbors in owl monkeys, manuscript in preparation.Google Scholar
  175. Preuss, T. M., Beck, P. D., and Kaas, J. H., 1993, Areal, modular, and connectional organization of visual cortex in a prosimian primate, the slow loris, Nycticebus coucang, Brain Behav. Evol., 42: 237–251.Google Scholar
  176. Purves, D., and LaMantia, A., 1990, Number of “blobs” in the primary visual cortex of neonatal and adult monkeys, Proc. Natl. Acad. Sci. USA 87: 5764–5767.PubMedCrossRefGoogle Scholar
  177. Raczkowski, D., and Diamond, I. T, 1980, Cortical connections of the pulvinar nucleus in Galago, J. Comp. Neurol. 193: 1–40.CrossRefGoogle Scholar
  178. Raczkowski, D., and Fitzpatrick, D., 1990, Terminal arbors of individual, physiologically identified geniculocortical axons in the tree shrew’s striate cortex, J. Comp. Neurol. 302: 500–514.PubMedCrossRefGoogle Scholar
  179. Redies, C., Diksic, M., and Riml, H., 1990, Functional organization in the ferret visual cortex: A double-labeled 2-deoxyglucose study, J. Neurosci. 10: 2791–2803.PubMedGoogle Scholar
  180. Rezak, M., and Benevento, L. A., 1979, A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey, Brain Res. 167: 19–40.PubMedCrossRefGoogle Scholar
  181. Ribak, C., and Peters, A., 1975, An autoradiographic study of the projections from the lateral geniculate body of the rat, Brain Res. 92: 341–368.PubMedCrossRefGoogle Scholar
  182. Rockland, K. S., 1992, Laminar distribution of neurons projecting from area V1 to V2 in macaque and squirrel monkeys. Cereb. Cortex 2: 38–47.PubMedCrossRefGoogle Scholar
  183. Rockland, K. S., and Lund, J. S., 1983, Intrinsic laminar lattice connections in primate visual cortex, J. Camp. Neurol. 216: 306–318.CrossRefGoogle Scholar
  184. Rockland, K. S., and Pandya, D. K., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.PubMedCrossRefGoogle Scholar
  185. Rockland, K. S., Lund, J. S., and Humphrey, A. L., 1982, Anatomical banding of intrinsic connections in striate cortex of tree shrews (Tupaia glis), J. Comp. Neurol. 209: 41–58.PubMedCrossRefGoogle Scholar
  186. Rodman, H. R., Gross, C. G., and Albright, T. D., 1990, Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal, J. Neurosci. 10: 1154–1164.PubMedGoogle Scholar
  187. Rosa, M. G. P., Gattass, R., and Fiorani, M., Jr., 1988, Complete pattern of ocular dominance stripes in V1 of a New World monkey, Cebus apella, Exp. Brain Res. 72: 645–648.Google Scholar
  188. Rosa, M. G. P., Gattass, R., and Soares, J. G. M., 1991, A quantitative analysis of cytochrome oxidaserich patches in the primary visual cortex of cebus monkeys: Topographic distribution and effects of late monocular enucleation, Exp. Brain Res. 84: 195–209.PubMedCrossRefGoogle Scholar
  189. Rowe, M. H., Benevento, L. A., and Rezak, M., 1978, Some observations on the patterns of segregated geniculate inputs to the visual cortex in New World primates: An autoradiographic study, Brain Res. 159: 371–378.PubMedCrossRefGoogle Scholar
  190. Sanderson, K.J., Haight, J. R., and Dearson, L.J., 1980, Transneuronal transport of tritiated fucose and proline in the visual pathways of the brushtailed possum, Trichosurus vulpecula, Neurosci. Lett. 20: 243–248.CrossRefGoogle Scholar
  191. Schiller, P. H., Stryker, M. P., Cynader, M., and Berman, N., 1974, Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of the visual cortex, J. Neurophysiol. 37: 181–194.PubMedGoogle Scholar
  192. Sesma, M. A., Casagrande, V. A., and Kaas, J. H., 1984, Cortical connections of area 17 in tree shrews, J. Comp. Neurol. 230: 337–351.PubMedCrossRefGoogle Scholar
  193. Shaw, C., and Cynader, M., 1986, Laminar distribution of receptors in monkey (Macaca fascicularis) geniculostriate system, J. Comp. Neurol. 248: 301–312.PubMedCrossRefGoogle Scholar
  194. Sherk, H., and LeVay, S., 1983, Contribution of the cortico-claustral loop to receptive field properties in area 17 of the cat, J. Neurosci. 3: 2121–2127.PubMedGoogle Scholar
  195. Sherman, S. M., and Spear, P. D., 1982, Organization of visual pathways in normal and visually deprived cats, Physiol. Rev. 62: 738–855.PubMedGoogle Scholar
  196. Sherman, S. M., Norton, T. T., and Casagrande, V. A., 1975, X-and Y-cells in the dorsal lateral geniculate nucleus of the tree shrew (Tupaia glis), Brain Res. 93: 152–157.PubMedCrossRefGoogle Scholar
  197. Shipp, S., and Zeki, S., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–324.PubMedCrossRefGoogle Scholar
  198. Silverman, M. S., Grosof, D. H., De Valois, R. L., and Elfar, S. D., 1989, Spatial-frequency organization in primate striate cortex, Proc. Natl. Acad. Sci. USA 86: 711–715.PubMedCrossRefGoogle Scholar
  199. Snyder, M., and Diamond, I. T., 1968, The organization and function of the visual cortex in the tree shrew, Brain Behav. Evol. 1: 244–288.CrossRefGoogle Scholar
  200. Sousa, A. P., Pinon, M. C., Gattass, R., and Rosa, M. G., 1991, Topographic organization of cortical input to striate cortex in the cebus monkey: A fluorescent tracer study, J. Comp. Neurol. 308: 665–682.PubMedCrossRefGoogle Scholar
  201. Spatz, W. B., 1979, The retino-geniculo-cortical pathway in Callithrix. II. The geniculo-cortical projection, Exp. Brain Res. 36: 401–410.PubMedCrossRefGoogle Scholar
  202. Spatz, W. B., 1989, Loss of ocular dominance columns with maturity in the monkey, Callithrix jacchus, Brain Res. 488: 376–380.CrossRefGoogle Scholar
  203. Steele, G. E., Weiler, R. E., and Cusick, C. G., 1991, Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys, J. Comp. Neurol. 306: 495–520.PubMedCrossRefGoogle Scholar
  204. Stone, J., 1983, Parallel processing, in: The Visual System: The Classification of Retinal Ganglion Cells and Its Impact on the Neurobiology of Vision, Plenum Press, New York.Google Scholar
  205. Swadlow, H. D., 1983, Efferent systems of primary visual cortex: A review of structure and function, Brain Res. Rev. 6: 1–24.CrossRefGoogle Scholar
  206. Symonds, L. L., and Kaas, J. H., 1978, Connections of striate cortex in the prosimian (Galago senegalensis), J. Comp. Neurol. 181: 477–512.PubMedCrossRefGoogle Scholar
  207. Symonds, L. L., and Rosenquist, A. C., 1984, Corticocortical connections among visual areas in the cat, J. Comp. Neurol. 229: 39–47.PubMedCrossRefGoogle Scholar
  208. Tigges, J., and Tigges, M., 1979, Ocular dominance columns in the striate cortex of chimpanzee (Pan troglodytes), Brain Res. 166: 386–390.PubMedCrossRefGoogle Scholar
  209. Tigges, J., and Tigges, M., 1985, Subcortical sources of direct projections to visual cortex, in: Cerebral Cortex, Volume 3 (A. Peters and E.G. Jones, eds.), Plenum Press, New York, pp. 351–378.Google Scholar
  210. Tigges, J., Tigges, M., and Perachio, A. A., 1977, Complementary laminar termination of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey, J. Comp. Neurol. 176: 87–100.PubMedCrossRefGoogle Scholar
  211. Tigges, J., Tigges, M., Anschel, S., Cross, N. A., Letbetter, W. D., and McBride, R. L., 1981, Area and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri), J. Comp. Neurol. 560: 539.CrossRefGoogle Scholar
  212. Tigges, M., Hendrickson, A. E., and Tigges, J., 1984, Anatomical consequences of long-term monocular eyelid closure on lateral geniculate nucleus and striate cortex in squirrel monkey, J. Comp. Neurol. 227: 1–13.PubMedCrossRefGoogle Scholar
  213. Tootell, R. B. H., and Hamilton, S. L., 1989, Functional anatomy of the second visual area (V2) in the macaque, J. Neurosci. 9: 2620–2644.PubMedGoogle Scholar
  214. Tootell, R. B. H., Silverman, M. S., Switkes, E., and De Valois, R. L., 1982, Deoxyglucose analysis of retinotopic organization in primate striate cortex, Science 218: 902–904.PubMedCrossRefGoogle Scholar
  215. Tootell, R. B. H., Hamilton, S. L., and Silverman, M. S., 1985, Topography of cytochrome oxidase activity in owl monkey cortex, J. Neurosci. 5: 2786–2800.PubMedGoogle Scholar
  216. Trojanowski, J. Q., and Jacobson, S., 1976, Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey, J. Comp. Neurol. 169: 371–392.PubMedCrossRefGoogle Scholar
  217. Ts’o, D. Y., and Gilbert, C. C, 1988, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosci. 8: 1712–1727.Google Scholar
  218. Ts’o, D. Y., Gilbert, C. D., and Wiesel, T. N., 1986, Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis, J. Neurosci. 6: 1160–1170.Google Scholar
  219. Ungerleider, L. G., and Desimone, R., 1986, Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2, J. Comp. Neurol. 248: 147–163.PubMedCrossRefGoogle Scholar
  220. Ungerleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in: Analysis of Visual Behavior (M. A. Goodale and R. J. W. Mansfield, eds.), MIT Press, Cambridge, Mass., pp. 549–586.Google Scholar
  221. Ungerleider, L. G., Galkin, T. W., and Mishkin, M., 1983, Visuotopic organization of projections from striate cortex to inferior and lateral pulvinar in rhesus monkey, J. Comp. Neurol. 217: 137–157.PubMedCrossRefGoogle Scholar
  222. Usrey, W. M., Muly, E. C., and Fitzpatrick, D., 1992, Lateral geniculate projections to the superficial layers of visual cortex in the tree shrew, J. Comp. Neurol. 319: 159–171.PubMedCrossRefGoogle Scholar
  223. Van Essen, D. C., Newsome, W. T, and Maunsell, J. H. R., 1984, The visual-field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability, Vision Res. 24: 429–448.PubMedCrossRefGoogle Scholar
  224. Van Essen, D. C., Newsome, W. T, Maunsell, J. H. R., and Bixby, J. L., 1986, The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections, J. Comp. Neurol. 244: 451–480.PubMedCrossRefGoogle Scholar
  225. Van Essen, D. C., Felleman, D. J., DeYoe, E. A., Olavarria, J., and Knierim, J., 1990, Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey, Cold Spring Harbor Symp. Quant. Biol. 55: 679–696.PubMedCrossRefGoogle Scholar
  226. Weber, J. T., Casagrande, V. A., and Harting, J. K., 1977, Transneuronal transport of 3H proline within the visual system of the grey squirrel, Brain Res. 129: 346–352.PubMedCrossRefGoogle Scholar
  227. Weber, J. T, Huerta, M. F., Kaas, J. H., and Harting, J. K., 1983, The projections of the lateral geniculate nucleus of the squirrel monkey: Studies of the interlaminar zones and the S layers, J. Comp. Neurol. 213: 135–145.PubMedCrossRefGoogle Scholar
  228. Weiskrantz, L., 1986, Blindsight, Oxford University Press (Clarendon), London.Google Scholar
  229. Weiler, R. E., and Kaas, J. H., 1982, The organization of the visual system in Galago: Comparisons with monkeys, in: The Lesser Bush Baby (Galago) as an Animal Model: Selected Topics (D. E. Haines, ed.), CRC Press, Boca Raton, Fla., pp. 107–135.Google Scholar
  230. Weiler, R. E., and Kaas, J. H., 1983, Retinotopic patterns of connections of 17 with visual areas V-II and MT in macaque monkeys, J. Comp. Neurol. 220: 253–279.CrossRefGoogle Scholar
  231. Weller, R. E., and Kaas, J. H., 1987, Subdivisions and connections of inferior temporal cortex in owl monkeys, J. Comp. Neurol. 256: 137–172.PubMedCrossRefGoogle Scholar
  232. Weller, R. E., Kaas, J. H., and Wetzel, A. B., 1979, Evidence for the loss of Y-cells of the retina after long-term ablation of visual cortex in monkeys, Brain Res. 160: 134–138.PubMedCrossRefGoogle Scholar
  233. Weller, R. E., Wall, J. T., and Kaas, J. H., 1984, Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys, J. Comp. Neurol. 228: 81–104.PubMedCrossRefGoogle Scholar
  234. Weiler, R. E., Steele, G. E., and Cusick, C. G., 1991, Cortical connections of dorsal cortex rostral to V II in squirrel monkeys, J. Comp. Neurol. 306: 521–537.CrossRefGoogle Scholar
  235. Weyland, T. G., and Swadlow, H. A., 1980, Interhemispheric striate projections in the prosimian primate, Galago senegalensis, Brain Behav. Evol. 17: 473–477.CrossRefGoogle Scholar
  236. Wiesel, T. N., Hubel, D. H., and Lam, D. M. K., 1974, Autoradiographic demonstration of ocular dominance columns in the monkey striate cortex by means of transneuronal transport, Brain Res. 79: 273–279.PubMedCrossRefGoogle Scholar
  237. Wong-Riley, M., 1979, Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry, Brain Res. 171: 11–28.PubMedCrossRefGoogle Scholar
  238. Wong-Riley, M. T. T., Hevner, R. F., Cutlan, R., Earnest, M., Egan, R., Frost, J., and Nguyen, T., 1993, Cytochrome oxidase in the human visual cortex: Distribution in the developing and the adult brain, Visual Neurosci. 10: 41–58.CrossRefGoogle Scholar
  239. Zeki, S. M., 1969, Representation of central visual fields in prestriate cortex of monkey, Brain Res. 19: 63–75.CrossRefGoogle Scholar
  240. Zeki, S. M., 1971, Cortical projections from two prestriate areas in the monkey, Brain Res. 34: 19–35.PubMedCrossRefGoogle Scholar
  241. Zeki, S. M., 1978, The cortical projections of foveal striate cortex in the rhesus monkey, J. Physiol. (London) 277: 227–244.Google Scholar
  242. Zeki, S. M., 1980a, A direct projection from area VI to area V3a of the rhesus monkey visual cortex, Proc. R. Soc. London 270: 499–506.CrossRefGoogle Scholar
  243. Zeki, S. M., 1980b, The representation of color in the cerebral cortex, Nature 284: 412–418.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Vivien A. Casagrande
    • 1
  • Jon H. Kaas
    • 2
  1. 1.Department of Cell BiologyVanderbilt University Medical SchoolNashvilleUSA
  2. 2.Department of PsychologyVanderbilt UniversityNashvilleUSA

Personalised recommendations