Advertisement

Primate Visual Cortex

Dynamic Metabolic Organization and Plasticity Revealed by Cytochrome Oxidase
  • Margaret T. T. Wong-Riley
Part of the Cerebral Cortex book series (CECO, volume 10)

Abstract

Few regions in the brain have received as much attention and scrutiny as the visual cortex, whose structural and functional organization provides an ideal model for understanding cerebral cortex in general. Binocularity in the visual system further permits experimental manipulations of a single eye input with the other eye serving as a useful internal reference point. In the last century, the visual cortex has consistently been used as a fertile testing ground for virtually every new neurobiological technique and innovation. As a result, much of its anatomical, neurochemical, and functional organizations have been examined. Of special significance is the discovery by Hubel and Wiesel (1968) of ocular dominance columns, orientation columns, and the exquisite system of functional modules in the primate striate cortex. Our understanding of the visual system has reached new heights over the last decade, with new techniques based on brain metabolism, enzyme histochemistry, immunohistochemistry, voltage-sensitive dyes, and brain imaging having been applied rigorously to the study of the visual cortex (e.g., Kennedy et al., 1976; Wong-Riley, 1979b; Horton and Hubel, 1981; Hendrickson et al., 1981; Tootell et al., 1982, 1988a–e; Hockfield et al., 1983; Horton, 1984; Carroll and Wong-Riley, 1984; Wong-Riley and Carroll, 1984a,b; Livingstone and Hubel, 1984a; Hendry and Jones, 1986; Blasdel and Salama, 1986; Wong-Riley et al., 1989a,b; Ts’o et al., 1990; Beaulieu et al., 1992). In this chapter, I will concentrate on cytochrome oxidase, and review what this endogenous metabolic marker has revealed about the primate visual cortex. The species on which most of the studies are based is the macaque monkey, but other primate species including man will be described when appropriate. A comparative study with other mammalian species has been reported previously (Wong-Riley, 1988).

Keywords

Visual Cortex Cytochrome Oxidase Squirrel Monkey Lateral Geniculate Nucleus Primate Visual Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allman, J., and Zucker, S., 1990, Cytochrome oxidase and functional coding in primate striate cortex: A hypothesis, Cold Spring Harbor Symp. Quant. Biol. 55: 979–982.PubMedCrossRefGoogle Scholar
  2. Attardi, G., and Schatz, G., 1988, Biogenesis of mitochondria, Annu. Rev. Cell Biol. 4: 289–333.PubMedCrossRefGoogle Scholar
  3. Bachelard, H. S., 1975, Energy utilized by neurotransmitters, in: Brain Work, Alfred Benzon Symposium, VIII (D. H. Inguar and N. A. Lassen, eds.), Academic Press, New York, pp. 79–81.Google Scholar
  4. Bartlett, J., and Doty, R., 1974, Response of units in striate cortex of squirrel monkeys to visual and electrical stimuli, J. Neurophysiol. 37: 621–641.PubMedGoogle Scholar
  5. Beaulieu, C., Kisvárday, Z., Somogyi, P., Cynader, M., and Cowey, A., 1992, Quantitative distribution of GABA-immunopositive and-immunonegative neurons and synapses in the monkey striate cortex (area 17), Cereb. Cortex 2: 295–309.PubMedCrossRefGoogle Scholar
  6. Blasdel, G. G., and Fitzpatrick, D., 1984, Physiological organization of layer 4 in macaque striate cortex, J. Neurosci. 4: 880–895.PubMedGoogle Scholar
  7. Blasdel, G. G., and Lund, J. S., 1983, Termination of afferent axons in macaque striate cortex, J. Neurosci. 3: 1389–1413.PubMedGoogle Scholar
  8. Blasdel, G. G., and Salama, G., 1986, Voltage-sensitive dyes reveal a modular organization in monkey striate cortex, Nature 321: 579–585.PubMedCrossRefGoogle Scholar
  9. Burkhalter, A., and Bernardo, K. L., 1989, Organization of corticocortical connections in human visual cortex, Proc. Natl. Acad. Sci. USA 86: 1071–1075.PubMedCrossRefGoogle Scholar
  10. Carroll, E. W., and Wong-Riley, M. T. T., 1982, Light and EM analysis of cytochrome oxidase-rich zones in the striate cortex of squirrel monkeys, Soc. Neurosci. Abstr. 8: 706.Google Scholar
  11. Carroll, E. W., and Wong-Riley, M. T. T., 1984, Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey, J. Comp. Neurol. 222: 1–17.PubMedCrossRefGoogle Scholar
  12. Carroll, E. W., and Wong-Riley, M., 1985, Correlation between cytochrome oxidase staining and the uptake and laminar distribution of tritiated aspartate, glutamate, γ-aminobutyrate and glycine in the striate cortex of the squirrel monkey, Neuroscience 15: 959–976.PubMedCrossRefGoogle Scholar
  13. Carroll, E. W., and Wong-Riley, M., 1987a, Neuronal uptake and laminar distribution of tritiated aspartate, glutamate, gamma-aminobutyrate and glycine in the prestriate cortex of squirrel monkeys: Correlation with levels of cytochrome oxidase activity and their uptake in area 17, Neuroscience 22: 395–412.PubMedCrossRefGoogle Scholar
  14. Carroll, E. W., and Wong-Riley, M., 1987b, Recovery of cytochrome oxidase activity in the adult macaque visual system after termination of impulse blockage due to tetrodotoxin, Soc. Neurosci. Abstr. 13: 1046.Google Scholar
  15. Celio, M. R., Scharer, L., Morrison, J. H., Norman, A. W., and Bloom, F. E., 1986, Calbindin immunoreactivity alternates with cytochrome c-oxidase-rich zones in some layers of the primate visual cortex, Nature 323: 715–717.PubMedCrossRefGoogle Scholar
  16. Cotlier, E., Lieberman, T. W., and Gray, A. J., 1965, Dehydrogenases and diaphorases in monkey lateral geniculate body, Arch. Neurol. 12: 295–299.CrossRefGoogle Scholar
  17. Crawford, M. L. J., and Marc, R. E., 1976, Light transmission of cat and monkey eyelids, Vision Res. 16: 323–324.PubMedCrossRefGoogle Scholar
  18. Creutzfeldt, O. D., 1975, Neurophysiological correlates of different functional states of the brain, in: Brain Work: Alfred Benzon Symposium, VIII (D. H. Ingvar and N. A. Lassen, eds.), Academic Press, New York, pp. 21–46.Google Scholar
  19. Cusick, C. G., and Kaas, J. H., 1988, Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys, Visual Neurosci. 1: 211–237.CrossRefGoogle Scholar
  20. DeHay, C., Horsburgh, G., Berland, M., Killackey, H., and Kennedy, H., 1989, Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input, Nature 337: 265–267.PubMedCrossRefGoogle Scholar
  21. Derrington, A. M., and Lennie, P., 1984, Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J. Physiol. (London) 357: 219–240.Google Scholar
  22. Derrington, A. M., Krauskopf, J., and Lennie, P., 1984, Chromatic mechanisms in lateral geniculate nucleus of macaque, J. Physiol. (London) 357: 241–265.Google Scholar
  23. De Valois, R. L., Snodderly, D. M., Yund, E. W., and Hepler, N. K., 1977, Responses of macaque lateral geniculate cells to luminance and color figures, Sens. Processes 1: 244–259.PubMedGoogle Scholar
  24. DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.PubMedCrossRefGoogle Scholar
  25. DeYoe, E. A., and Van Essen, D. C., 1988, Concurrent processing streams in monkey visual cortex, Trends Neurosci. 11: 219–226.PubMedCrossRefGoogle Scholar
  26. DeYoe, E. A., Hockfield, S., Garren, H., and Van Essen, D. C., 1990, Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey, Visual Neurosci. 5: 67–81.CrossRefGoogle Scholar
  27. DiRocco, R. J., Kageyama, G. H., and Wong-Riley, M. T. T., 1989, The relationship between CNS metabolism and cytoarchitecture: A review of 14C-deoxyglucose studies with correlation to cytochrome oxidase histochemistry, Comput. Med. Imag. Graph. 13: 81–92.CrossRefGoogle Scholar
  28. Erecinska, M., and Silver, I. A., 1989, ATP and brain function, J. Cereb. Blood Flow Metab. 9: 2–19.PubMedCrossRefGoogle Scholar
  29. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex 1: 1–47.PubMedCrossRefGoogle Scholar
  30. Fitzpatrick, D., Itoh, K., and Diamond, I. T., 1983, The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus), J. Neurosci. 3: 673–702.PubMedGoogle Scholar
  31. Fitzpatrick, D., Lund, J. S., and Blasdel, G. G., 1985, Intrinsic connections of macaque striate cortex. Afferent and efferent connections of lamina 4C, J. Neurosci. 5: 3329–3349.PubMedGoogle Scholar
  32. Fitzpatrick, D., Lund, J. S., Schmechel, D. E., and Towles, A. C., 1987, Distribution of GABAergic neurons and axon terminals in the macaque striate cortex, J. Comp. Neurol. 264: 73–91.PubMedCrossRefGoogle Scholar
  33. Freeman, R. D., and Bradley, A., 1980, Monocularly deprived humans: Nondeprived eye has supernormal vernier acuity, J. Neurophysiol. 43: 1645–1653.PubMedGoogle Scholar
  34. Fries, W., and Distel, H., 1983, Large layer VI neurons of monkey striate cortex (Meynert cells) project to the superior colliculus, Proc. R. Soc. London Ser. B 219: 53–59.CrossRefGoogle Scholar
  35. Fries, W., Keizer, K., and Kuypers, H. G. J. M., 1985, Larger layer VI cells in macaque striate cortex (Meynert cells) project to both superior colliculus and prestriate visual area V5, Exp. Brain Res. 58: 613–616.PubMedCrossRefGoogle Scholar
  36. Gottlieb, M. D., Pasik, P., and Pasik, T., 1985, Early postnatal development of the monkey visual system. I. Growth of the lateral geniculate nucleus and striate cortex, Dev. Brain Res. 17: 53–62.CrossRefGoogle Scholar
  37. Graybiel, A. M., and Ragsdale, C. W., Jr., 1982. Pseudocholinesterase staining in the primary visual pathway of the macaque monkey, Nature 299: 439–442.PubMedCrossRefGoogle Scholar
  38. Hawken, M. J., Parker, A. J., and Lund, J. S., 1987, Contrast sensitivity and laminar distribution of direction selective neurons in monkey striate cortex, Invest. Ophthalmol. Vis. Sci. (Suppl.) 28: 197.Google Scholar
  39. Hazeltine, E. C., De Bruyn, E. J., and Cassagrande, V. A., 1979, Demonstration of ocular dominance columns in Nissl-stained sections of monkey visual cortex following enucleation, Brain Res. 176: 153–158.CrossRefGoogle Scholar
  40. Hendrickson, A. E., 1985, Dots, stripes and columns in monkey visual cortex, Trends Neurosci. 8: 406–410.CrossRefGoogle Scholar
  41. Hendrickson, A. E., and Tigges, M., 1985, Enucleation demonstrates ocular dominance columns in Old World macaque but not in New World squirrel monkey visual cortex, Brain Res. 333: 340–344.PubMedCrossRefGoogle Scholar
  42. Hendrickson, A. E., Hunt, S. P., and Wu, J.-Y., 1981, Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex, Nature 292: 605–607.PubMedCrossRefGoogle Scholar
  43. Hendry, S. H. C., and Jones, E. G., 1986, Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17, Nature 320: 750–753.PubMedCrossRefGoogle Scholar
  44. Hendry, S. H. C., and Jones, E. G., 1988, Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys, Neuron 1: 701–712.PubMedCrossRefGoogle Scholar
  45. Hendry, S. H. C., Jones, E. G., DeFelipe, J., Schmechel, D. E., Brandon, C., and Emson, P. C., 1984, Neuropeptide-containing neurons of the cerebral cortex are also GABAertic, Proc. Natl. Acad. Sci. USA 81: 6526–6530.PubMedCrossRefGoogle Scholar
  46. Hendry, S. H. C., Jones, E. G. Hockfield, S., and McKay, R. D. G., 1988, Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus, J. Neurosci. 8: 518–542.PubMedGoogle Scholar
  47. Hess, D. T., and Edwards, M. A., 1987, Anatomical demonstration of ocular segregation in the retinogeniculocortical pathway of the New World capuchin monkey (Cebus apella), J. Comp. Neurol. 264: 409–420.PubMedCrossRefGoogle Scholar
  48. Hevner, R. F., 1990, Cytochrome oxidase in mammalian brain: Regulation of its activity, protein amount, and mRNA by neural functional activity, Doctoral dissertation, Medical College of Wisconsin.Google Scholar
  49. Hevner, R. F., and Wong-Riley, M. T. T., 1989, Brain cytochrome oxidase: Purification, antibody generation, and immunohistochemical/histochemical correlations in the CNS, J. Neurosci. 9: 3884–3898.PubMedGoogle Scholar
  50. Hevner, R. F., and Wong-Riley, M. T. T., 1990, Regulation of cytochrome oxidase protein levels by functional activity in the macaque monkey visual system, J. Neurosci. 10: 1331–1340.PubMedGoogle Scholar
  51. Hevner, R. F., and Wong-Riley, M. T. T., 1991, Neuronal expression of nuclear and mitochondrial genes for cytochrome oxidase (CO) subunits analyzed by in situ hybridization: Comparison with CO activity and protein, J. Neurosci. 11: 1942–1958.PubMedGoogle Scholar
  52. Hevner, R. F., Duff, R. S., and Wong-Riley, M. T. T., 1992, Coordination of ATP production and consumption in brain: Parallel regulation of cytochrome oxidase and Na+, K+-ATPase, Neurosci. Lett. 138: 188–192.PubMedCrossRefGoogle Scholar
  53. Hevner, R. F., Liu, S., and Wong-Riley, M. T. T., 1993, An optimized method for determining cytochrome oxidase activity in brain tissue homogenates, J. Neurosci. Methods, in press.Google Scholar
  54. Hille, B., 1968, Pharmacological modifications of the sodium channels of frog nerve, J. Gen. Physiol. 51: 199–219.PubMedCrossRefGoogle Scholar
  55. Hiltgen, G., and Wong-Riley, M., 1986, Quantitative EM analysis of the effect of retinal impulse blockage on cytochrome oxidase activity in lamina IVC of macaque striate cortex, Soc. Neurosci. Abstr. 12: 130.Google Scholar
  56. Hockfield, S., McKay, R. D., Hendry, S. H. C., and Jones, E. G., 1983, A surface antigen that identifies ocular dominance columns in the visual cortex and laminar features of the lateral geniculate nucleus, Cold Spring Harbor Symp. Quant. Biol. 48: 877–889.PubMedCrossRefGoogle Scholar
  57. Horton, J. C., 1984, Cytochrome oxidase patches: A new cytoarchitectonic feature of monkey visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 199–253.CrossRefGoogle Scholar
  58. Horton, J. C., and Hedley-Whyte, E. T., 1984, Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 255–272.CrossRefGoogle Scholar
  59. Horton, J. C., and Hubel, D. H., 1981, Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey, Nature 292: 762–764.PubMedCrossRefGoogle Scholar
  60. Hubel, D. H., and Livingstone, M. S., 1985, Complex-unoriented cells in a subregion of primate area 18, Nature 315: 325–327.PubMedCrossRefGoogle Scholar
  61. Hubel, D. H., and Livingstone, M. S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci. 7: 3378–3415.PubMedGoogle Scholar
  62. Hubel, D. H., and Livingstone, M. S., 1990, Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey, J. Neurosci. 10: 2223–2237.PubMedGoogle Scholar
  63. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol (London) 195: 215–243.Google Scholar
  64. Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculocortical fibers in the macaque monkey, J. Comp. Neurol. 146: 421–450.PubMedCrossRefGoogle Scholar
  65. Hubel, D. H., and Wiesel, T. N., 1974, Sequence regularity and geometry of orientation columns in the monkey striate cortex, J. Comp. Neurol. 158: 267–294.PubMedCrossRefGoogle Scholar
  66. Hubel, D. H., and Wiesel, T. N., 1977, Ferrier lecture: Functional architecture of macaque monkey visual cortex, Proc. R. Soc. London Ser. B 198: 1–59.CrossRefGoogle Scholar
  67. Hubel, D. H., Wiesel, T. N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philos. Trans. R. Soc. London Ser. B 278: 131–163.CrossRefGoogle Scholar
  68. Hubel, D. H., Wiesel, T. N., and Stryker, M. P., 1978, Anatomical demonstration of orientation columns in macaque monkey, J. Comp. Neurol. 177: 361–380.PubMedCrossRefGoogle Scholar
  69. Humphrey, A. L., and Hendrickson, A. E., 1983, Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey, J. Neurosci. 3: 345–358.PubMedGoogle Scholar
  70. Jacobs, G. H., 1977, Visual capacities of the owl monkey (Aotus tnvirgatus). I. Spectral sensitivity and colour vision, Vision Res. 17: 811–820.PubMedCrossRefGoogle Scholar
  71. Jones, E. G., DeFelipe, J., Hendry, S. H. C., and Maggio, J. E., 1988, A study of tachykininimmunoreactive neurons in monkey cerebral cortex, J. Neurosci. 8: 1206–1224.PubMedGoogle Scholar
  72. Kageyama, G. H., and Wong-Riley, M. T. T., 1982, Histochemical localization of cytochrome oxidase in the hippocampus: Correlation with specific neuronal types and afferent pathways, Neuro-science 7: 2337–2361.Google Scholar
  73. Kaplan, E., Purpura, K., and Shapley, R. M., 1987, Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus, J. Physiol. (London) 391: 267–288.Google Scholar
  74. Kayama, Y., Riso, R., Bartlett, J., and Doty, R., 1979, Luxotonic responses of units in macaque striate cortex, J. Neurophysiol. 42: 1495–1517.PubMedGoogle Scholar
  75. Kennedy, C., Des Rosiers, M. H. Sakurada, O., Shinohara, M., Reivich, M., Jehle, H. W., and Sokoloff, L., 1976, Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C] deoxyglucose technique, Proc. Natl. Acad. Sci. USA 73: 4230–4234.PubMedCrossRefGoogle Scholar
  76. Kennedy, H., Bullier, J., and Dehay, C., 1985, Cytochrome oxidase activity in the striate cortex and lateral geniculate nucleus of the newborn and adult macaque monkey, Exp. Brain Res. 61: 204–209.PubMedCrossRefGoogle Scholar
  77. Kennedy, H., Dehay, C., and Horsburgh, G., 1990, Striate cortex periodicity, Nature 348: 494.PubMedCrossRefGoogle Scholar
  78. Krubitzer, L. A., and Kaas, J. H., 1989, Cortical integration of parallel pathways in the visual system of primates, Brain Res. 478: 161–165.PubMedCrossRefGoogle Scholar
  79. Kuljis, R. O., and Rakic, P., 1989, Neuropeptide Y-containing neurons are situated predominantly outside cytochrome oxidase puffs in macaque visual cortex, Visual Neurosci. 2: 57–62.CrossRefGoogle Scholar
  80. Kuljis, R. O., and Rakic, P., 1990, Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors, Proc. Natl. Acad. Sci. USA 87: 5303–5306.PubMedCrossRefGoogle Scholar
  81. Lennie, P., 1984, Recent development in the physiology of color vision, Trends Neurosci. 7: 243–248.CrossRefGoogle Scholar
  82. LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191: 1–51.PubMedCrossRefGoogle Scholar
  83. LeVay, S., Connolly, M., Houde, J., and Van Essen, D. C., 1985, The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey, J. Neurosci. 5: 486–501.PubMedGoogle Scholar
  84. Leventhal, A. G., Rodieck, R. W., and Dreher, B., 1981, Retinal ganglion cell classes in the Old World monkey: Morphology and central projections, Science 213: 1139–1142.PubMedCrossRefGoogle Scholar
  85. Liu, S., and Wong-Riley, M., 1990, Quantitative light and electron microscopic analysis of cytochrome oxidase distribution in neurons of the lateral geniculate nucleus of the adult monkey, Visual Neurosci. 4: 269–287.CrossRefGoogle Scholar
  86. Liu, S., Wilcox, D. A., Sieber-Blum, M., and Wong-Riley, M., 1990, Developing neural crest cells in culture: Correlation of cytochrome oxidase activity with SSEA-1 and dopamine-β-hydroxylase immunoreactivity, Brain Res. 535: 271–280.PubMedCrossRefGoogle Scholar
  87. Liu, S., Hevner, R. F., and Wong-Riley, M. T. T., 1991, Metabolic map of the normal rat brain as revealed by cytochrome oxidase histochemistry and biochemistry, Soc. Neurosci. Abstr. 17: 864.Google Scholar
  88. Livingstone, M., 1990, Segregation of form, color, movement, and depth processing in the visual system: Anatomy, physiology, art, and illusion, in: Vision and the Brain (B. Cohen and I. Bodis-Wollner, eds.), Raven Press, New York, pp. 119–138.Google Scholar
  89. Livingstone, M. S., and Hubel, D. H., 1982, Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Nati Acad. Sci. USA 79: 6098–6101.CrossRefGoogle Scholar
  90. Livingstone, M. S., and Hubel, D. H., 1983, Specificity of cortico-cortical connections in monkey visual system, Nature 304: 531–534.PubMedCrossRefGoogle Scholar
  91. Livingstone, M. S., and Hubel, D. H., 1984a, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  92. Livingstone, M. S., and Hubel, D. H., 1984b, Specificity of intrinsic connections in primate primary visual cortex, J. Neurosci. 4: 2830–2835.PubMedGoogle Scholar
  93. Livingstone, M. S., and Hubel, D. H., 1987a, Connections between layer 4B of area 17 and thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci. 7: 3371–3377.PubMedGoogle Scholar
  94. Livingstone, M. S., and Hubel, D. H., 1987b, Psychophysical evidence for separate channels for the perception of form, color, movement, and depth, J. Neurosci. 7: 3416–3468.PubMedGoogle Scholar
  95. Livingstone, M. S., and Hubel, D. H., 1988, Segregation of form, color, movement, and depth: Anatomy, physiology, and perception, Science 240: 740–749.PubMedCrossRefGoogle Scholar
  96. Lowry, O. H., 1975, Energy metabolism in brain and its control, in: Brain Work, Alfred Benzon Symposium VIII (D. H. Ingvar and N. A. Lassen, eds.), Academic Press, New York, pp. 48–64.Google Scholar
  97. Lowry, O. H., Roberts, N. R., Leiner, K. Y, Wu, M.-L., Farr, A. L., and Albers, R. W, 1954, The quantitative histochemistry of brain. III. Ammon’s horn, J. Biol. Chem. 207: 39–49.PubMedGoogle Scholar
  98. Lund, J. S., 1973, Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatto), J. Comp. Neurol. 147: 455–496.PubMedCrossRefGoogle Scholar
  99. Lund, J. S., 1988, Anatomical organization of macaque striate cortex, Annu. Rev. Neurosci. 11: 253–288.PubMedCrossRefGoogle Scholar
  100. Lund, J. S., and Boothe, R. G., 1975, Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey, J. Comp. Neurol. 159: 305–334.CrossRefGoogle Scholar
  101. Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., and Fuchs, A. F., 1975, The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase, J. Comp. Neurol. 164: 287–304.PubMedCrossRefGoogle Scholar
  102. Lund, J. S., Hendrickson, A. E., Ogren, M. P., and Tobin, E. A. 1981, Anatomical organization of primate visual area V-II, J. Comp. Neurol. 202: 19–45.PubMedCrossRefGoogle Scholar
  103. Luo, X. G., Hevner, R. F., and Wong-Riley, M. T. T, 1989, Double labeling of cytochrome oxidase and gamma aminobutyric acid in central nervous system neurons of adult cats, J. Neurosci. Methods 30: 189–195.PubMedCrossRefGoogle Scholar
  104. Maguire, W. M., and Baizer, J. S., 1982, Luminance coding of briefly presented stimuli in area 17 of the rhesus monkey, J. Neurophysiol. 47: 128–137.PubMedGoogle Scholar
  105. Malach, R., 1992, Dendritic sampling across processing streams in monkey striate cortex, J. Comp. Neurol. 315: 303–312.PubMedCrossRefGoogle Scholar
  106. Matthews, M. R., Cowan, W. M., and Powell, T. P. S., 1960, Transneuronal cell degeneration in the lateral geniculate nucleus of the macaque monkey, J. Anat. 94: 145–169.PubMedGoogle Scholar
  107. Maunsell, J. H. R., and Newsome, W. T, 1987, Visual processing in monkey extrastriate cortex, Annu. Rev. Neurosci. 10: 363–401.PubMedCrossRefGoogle Scholar
  108. Maunsell, J. H. R., and Van Essen, D. C., 1983, Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity, J. Neurophysiol. 49: 1148–1167.PubMedGoogle Scholar
  109. Mawe, G. M., and Gershon, M. D., 1986, Functional heterogeneity in the myenteric plexus: Demonstration using cytochrome oxidase as a verified cytochemical probe of the activity of individual enteric neurons, J. Comp. Neurol. 249: 381–391.PubMedCrossRefGoogle Scholar
  110. Michael, C. R. 1988, Retinal afferent arborization patterns, dendritic field orientations, and the segregation of function in the lateral geniculate nucleus of the monkey, Proc. Natl. Acad. Sci. USA 85: 4914–4918.PubMedCrossRefGoogle Scholar
  111. Mishkin, M., Ungerleider, L. G., and Macko, K. A. 1983, Object vision and spatial vision: Two cortical pathways, Trends Neurosci. 6: 414–417.CrossRefGoogle Scholar
  112. Mitzdorf, U., and Singer, W., 1979, Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: A current source density analysis of electrically evoked potentials, J. Comp. Neurol. 187: 71–84.PubMedCrossRefGoogle Scholar
  113. Mjaatvedt, A. E., and Wong-Riley, M. T. T., 1988, The relationship between synaptogenesis and cytochrome oxidase activity in Purkinje cells of the developing rat cerebellum, J. Comp. Neurol. 277: 155–182.PubMedCrossRefGoogle Scholar
  114. Moran, J., and Gordon, B., 1982, Long-term visual deprivation in a human, Vision Res. 22: 27–36.PubMedCrossRefGoogle Scholar
  115. Murphy, K. M., Van Sluyters, R. C., and Jones, D. G., 1991, The organization of cytochrome-oxidase blobs in cat visual cortex, Soc. Neurosci. Abstr. 17: 1088.Google Scholar
  116. Nie, F., and Wong-Riley, M., 1993, Double labeling of cytochrome oxidase (CO) and GABA in neurons and synapses of macaque puffs and interpuffs: A quantitative study, Soc. Neurosci. Abstr. 19: 334.Google Scholar
  117. Payne, B. R., and Peters, A., 1989, Cytochrome oxidase patches and Meynert cells in monkey visual cortex, Neuroscience 28: 353–363.PubMedCrossRefGoogle Scholar
  118. Purves, D., and LaMantia, A.-S., 1990, Numbers of “blobs” in the primary visual cortex of neonatal and adult monkeys, Proc. Natl. Acad. Sci. USA 87: 5764–5767.PubMedCrossRefGoogle Scholar
  119. Purves, D., and LaMantia, A., 1993, Development of blobs in the visual cortex of macaques, J. Comp. Neurol. 334: 169–175.PubMedCrossRefGoogle Scholar
  120. Rakic, P., 1976, Prenatal genesis of connections subserving ocular dominance in the rhesus monkey, Nature 261: 467–471.PubMedCrossRefGoogle Scholar
  121. Rail, W., 1962, Electrophysiology of a dendritic neuron model, Biophys, J. 145–167.Google Scholar
  122. Schein, S. J., and de Monasterio, F. M., 1987, Mapping of retinal and geniculate neurons onto striate cortex of macaque, J. Neurosci. 7: 996–1009.PubMedGoogle Scholar
  123. Schiller, P. H., and Malpeli, J. G., 1978, Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey, J. Neurophysiol. 41: 788–797.PubMedGoogle Scholar
  124. Seligman, A. M., Karnovsky, M. J., Wasserkrug, H. L., and Hanker, J. S., 1968, Nondroplet ultrastructural demonstrations of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB), J. Cell Biol. 38: 1–14.PubMedCrossRefGoogle Scholar
  125. Shapley, R. M., Kaplan, E., and Soodak, R., 1981, Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque, Nature 292: 543–545.PubMedCrossRefGoogle Scholar
  126. Shipp, S., and Zeki, S., 1985, Segregation of pathways leading from area V2 to area V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.PubMedCrossRefGoogle Scholar
  127. Siegel, G. J., Albers, R. W., Agranoff, B. W., and Katzman, R., 1981, Basic Neurochemistry, Little, Brown, Boston.Google Scholar
  128. Sillito, A. M., 1975, The contribution of inhibitory mechanisms to the receptive field properties of neurons in the striate cortex of the cat, J. Physiol. (London) 250: 305–329.Google Scholar
  129. Sillito, A. M., Kemp, J. A., Wilson, J. A., and Berardi, N., 1980, A re-evaluation of the mechanisms underlying simple cell orientation selectivity, Brain Res. 194: 517–520.PubMedCrossRefGoogle Scholar
  130. Silverman, M. S., Grosof, D. H., De Valois, R. L., and Elfar, S. D., 1989, Spatial-frequency organization in primate striate cortex, Proc. Natl. Acad. Sci. USA 86: 711–715.PubMedCrossRefGoogle Scholar
  131. Sokoloff, L., 1974, Changes in enzyme activities in neural tissues with maturation and development of the nervous system, in: The Neurosciences: Third Study Program (F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, Mass., pp. 885–898.Google Scholar
  132. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M., 1977, The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem. 28: 897–916.PubMedCrossRefGoogle Scholar
  133. Stenaas, S. S., Eddington, D. K., and Dobelle, W. H., 1974, The topography and variability of the primary visual cortex in man, J. Neurosurg. 40: 747–755.CrossRefGoogle Scholar
  134. Tigges, J. Spatz, W. B., and Tigges, M., 1973, Reciprocal point-to-point connections between parastriate and striate cortex in the squirrel monkey (Saimiri), J. Comp. Neurol. 148: 481–490.PubMedCrossRefGoogle Scholar
  135. Tigges, M., Hendrickson, A. E., and Tigges, J., 1984, Anatomical consequences of long-term monocular eyelid closure on lateral geniculate nucleus and striate cortex in squirrel monkey, J. Comp. Neurol. 227: 1–13.PubMedCrossRefGoogle Scholar
  136. Tootell, R. B. H., and Hamilton, S. L., 1989. Functional anatomy of the second visual area (V2) in the macaque, J. Neurosci. 9: 2620–2644.PubMedGoogle Scholar
  137. Tootell, R. B. H., Silverman, M. S., Switkes, E., and De Valois, R. L., 1982, Deoxyglucose analysis of retinotopic organization in primate striate cortex, Science 218: 902–904.PubMedCrossRefGoogle Scholar
  138. Tootell, R. B. H., Silverman, M. S., De Valois, R. L., and Jacobs, G. H., 1983, Functional organization of the second cortical visual area in primates, Science 220: 737–739.PubMedCrossRefGoogle Scholar
  139. Tootell, R. B. H., Hamilton, S. L., and Silverman, M. S., 1985, Topography of cytochrome oxidase activity in owl monkey cortex, J. Neurosci. 5: 2786–2800.PubMedGoogle Scholar
  140. Tootell, R. B. H., Hamilton, S. L., Silverman, M. S., and Switkes, E., 1988a, Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions, J. Neurosci. 8: 1500–1530.PubMedGoogle Scholar
  141. Tootell, R. B. H., Switkes, E., Silverman, M. S., and Hamilton, S. L., 1988b, Functional anatomy of macaque striate cortex. II. Retinotopic organization, J. Neurosci. 8: 1531–1568.PubMedGoogle Scholar
  142. Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., De Valois, R. L., and Switkes, E., 1988c, Functional anatomy of macaque striate cortex. III. Color, J. Neurosci. 8: 1569–1593.PubMedGoogle Scholar
  143. Tootell, R. B. H., Hamilton, S. L., and Switkes, E., 1988d, Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams, J. Neurosci. 8: 1594–1609.PubMedGoogle Scholar
  144. Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., Switkes, E., and De Valois, R. L., 1988e, Functional anatomy of macaque striate cortex. V. Spatial frequency, J. Neurosci. 8: 1610–1624.PubMedGoogle Scholar
  145. Trusk, T. C., and Wong-Riley, M. T. T., 1990, Focal laser retinal lesions reveal differential cytochrome oxidase reactivity in four isoeccentric regions of the macaque striate cortex, Soc. Neurosci. Abstr. 16: 708.Google Scholar
  146. Trusk, T. C., Kaboord, W. S., and Wong-Riley, M. T. T., 1990, Effects of monocular enucleation, tetrodotoxin, and lid suture on cytochrome oxidase reactivity in supragranular puffs of adult macaque striate cortex, Visual Neurosci. 4: 185–204.CrossRefGoogle Scholar
  147. Trusk, T. C., Wong-Riley, M., and DeYoe, E. A., 1992. Changes in cytochrome oxidase and neuronal activity in VI induced by monocular TTX blockade in macaque monkeys, Soc. Neurosci. Abstr. 18: 298.Google Scholar
  148. Trusk, T. C., Jaffe, G. J., and Wong-Riley, M. T. T, 1993, Laser retinal lesions: Effects on the metabolic integrity of the primate visual system, submitted for publication.Google Scholar
  149. Ts’o, D. Y., and Gilbert, C. D., 1988, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosci. 8: 1712–1727.Google Scholar
  150. Ts’o, D. Y., Frostig, R. D., Lieke, E. E., and Grinvald, A., 1990, Functional organization of primate visual cortex revealed by high resolution optical imaging, Science 249: 417–420.CrossRefGoogle Scholar
  151. Van Essen, D. C., and Maunsell, J. H. R., 1983, Hierarchical organization and functional streams in the visual cortex, Trends Neurosci. 6: 370–375.CrossRefGoogle Scholar
  152. Weber, J. T, Huerta, M. F., Kaas, J. H., and Harting, J. K., 1983, The projection of the lateral geniculate nucleus of the squirrel monkey: Studies of the interlamina zones and the S layers, J. Comp. Neurol. 213: 135–145.PubMedCrossRefGoogle Scholar
  153. Wiesel, T. N., and Hubel, D. H., 1966, Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey, J. Neurophysiol. 29: 1115–1156.PubMedGoogle Scholar
  154. Wiesel, T. N., Hubel, D. H., and Lam, D. M. K., 1974, Autoradiographic demonstration of ocular dominance columns in the monkey striate cortex by means of transneuronal transport, Brain Res. 79: 273–279.PubMedCrossRefGoogle Scholar
  155. Wikstrom, M., Krab, K., and Saraste, M., 1981, Cytochrome Oxidase: A Synthesis, Academic Press, New York.Google Scholar
  156. Wong-Riley, M. T. T., 1979a, Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys, Brain Res. 162: 201–217.PubMedCrossRefGoogle Scholar
  157. Wong-Riley, M., 1979b, Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 171: 11–28.PubMedCrossRefGoogle Scholar
  158. Wong-Riley, M. T. T., 1988, Comparative study of the mammalian primary visual cortex with cytochrome oxidase histochemistry, in: Vision: Structure and Function (D. T Yew, K. F. So, and D. S. C. Tsang, eds.), World Scientific Press, New Jersey, pp. 450–486.CrossRefGoogle Scholar
  159. Wong-Riley, M. T. T., 1989, Cytochrome oxidase: An endogenous metabolic marker for neuronal activity, Trends Neurosci. 12: 94–101.PubMedCrossRefGoogle Scholar
  160. Wong-Riley, M. T. T, and Carroll, E. W, 1984a, Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in V II prestriate cortex of the squirrel monkey, J. Comp. Neurol. 222: 18–37.PubMedCrossRefGoogle Scholar
  161. Wong-Riley, M., and Carroll, E. W., 1984b, The effect of impulse blockage on cytochrome oxidase activity in the monkey visual system, Nature 307: 262–264.PubMedCrossRefGoogle Scholar
  162. Wong-Riley, M. T. T., and Kageyama, G. H., 1986, Localization of cytochrome oxidase in the spinal cord and dorsal root ganglia, with quantitative analysis of ventral horn cells in the monkey, J. Comp. Neurol. 245: 41–61.PubMedCrossRefGoogle Scholar
  163. Wong-Riley, M. T. T., and Norton, T. T., 1988, Histochemical localization of cytochrome oxidase activity in the visual system of the tree shrew: Normal patterns and the effect of retinal impulse blockage, J. Comp. Neurol. 272: 562–578.PubMedCrossRefGoogle Scholar
  164. Wong-Riley, M., and Riley, D. A., 1983, The effect of impulse blockage on cytochrome oxidase activity in the cat visual system, Brain Res. 261: 185–193.PubMedCrossRefGoogle Scholar
  165. Wong-Riley, M., Trusk, T, and Hoppe, D., 1988, Localization of cytochrome oxidase in macaque striate cortex during prenatal development, Soc. Neurosci. Abstr. 14: 743.Google Scholar
  166. Wong-Riley, M. T. T., Tripathi, S. C., Trusk, T. C., and Hoppe, D. A., 1989a, Effect of retinal impulse blockage on cytochrome oxidase-rich zones in the macaque striate cortex. I. Quantitative EM analysis of neurons, Visual Neurosci. 2: 483–497.CrossRefGoogle Scholar
  167. Wong-Riley, M. T. T, Trusk, T. C., Tripathi, S. C., and Hoppe, D. A., 1989b, Effect of retinal impulse blockage on cytochrome oxidase-rich zones in the macaque striate cortex. II. Quantitative EM analysis of neuropil, Visual Neurosci. 2: 499–514.CrossRefGoogle Scholar
  168. Wong-Riley, M., Trusk, T, Kaboord, W., and Huang, Z., 1992, Interpuffs in the macaque striate cortex: Quantitative EM analysis of neurons before and after unilateral retinal impulse blockade, Soc. Neurosci. Abstr. 18: 299.Google Scholar
  169. Wong-Riley, M. T. T., Hevner, R. F., Cutlan, R., Earnest, M., Egan, R., Frost, J., and Nguyen, T., 1993a, Cytochrome oxidase in the human visual cortex: Distribution in the developing and the adult brain, Visual Neurosci. 10: 41–58.CrossRefGoogle Scholar
  170. Wong-Riley, M., Trusk, T., and Huang, Z., 1993b, Interpuffs in the macaque striate cortex: Quantitative EM analysis of neuropil before and after unilateral retinal impulse blockade, Soc. Neurosci. Abstr. 19: 334.Google Scholar
  171. Zeki, S. M., 1974, Cells respond to changing image size and disparity in the cortex of the rhesus monkey, J. Physiol. (London) 242: 827–841.Google Scholar
  172. Zeki, S. M., 1978, Functional specialisation in the visual cortex of the rhesus monkey, Nature 274: 423–428.PubMedCrossRefGoogle Scholar
  173. Zeki, S., and Shipp, S., 1988, The functional logic of cortical connections, Nature, 355: 311–317.CrossRefGoogle Scholar
  174. Zheng, D., LaMantia, A.-S., and Purves, D., 1991, Specialized vascularization of the primate visual cortex, J. Neurosci. 11: 2622–2629.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Margaret T. T. Wong-Riley
    • 1
  1. 1.Department of Cellular Biology and AnatomyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations