Advertisement

GABA Neurons and Their Role in Activity-Dependent Plasticity of Adult Primate Visual Cortex

  • E. G. Jones
  • S. H. C. Hendry
  • J. DeFelipe
  • D. L. Benson
Part of the Cerebral Cortex book series (CECO, volume 10)

Abstract

Since its identification more than 30 years ago (see Roberts, 1975), as a naturally occurring brain substance that inhibited neural activity, γ-aminobutyric acid (GABA) has become recognized as one of the major neurotransmitter agents of the mammalian central nervous system. The ubiquitous distribution of GABA neurons and GABA receptors and the demonstrable role of GABA in shaping, through inhibition, the stimulus—response properties of neurons at many levels of the central nervous system attest to its profound functional importance. In most of the major organized systems of the neuraxis, GABA can probably be regarded as occupying a status equal in importance to that of the excitatory amino acid transmitters.

Keywords

Visual Cortex Primate Visual Cortex Striate Cortex Basket Cell Gaba Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akil, M., and Lewis, D. A., 1992, Differential distribution of parvalbumin-immunoreactive pericellular clusters of terminal boutons in developing and adult monkey neocortex, Exp. Neurol. 115: 239–249.PubMedCrossRefGoogle Scholar
  2. Albus, K., and Wolf, W., 1984, Early post-natal development of neuronal function in the kitten’s visual cortex: A laminar analysis, J. Physiol. (London) 348: 153–185.Google Scholar
  3. Bartlet, J. E. A., 1951, A case of organized visual hallucinations in an old man with cataract, and their relation to the phenomenon of the phantom limb, Brain 74: 363–373.PubMedCrossRefGoogle Scholar
  4. Benson, D. L., and Jones, E. G., 1991, Differential intraneuronal regulation of GAD and β-preprotachykinin mRNAs in monkey visual cortex following monocular deprivation, Soc. Neurosci. Abstr. 17: 115.Google Scholar
  5. Benson, D. L., Isackson, P. J., and Jones, E. G., 1990, In situ hybridization reveals VIP precursor mRNA-containing neurons in monkey and rat neocortex, Mol. Brain Res. 9: 169–174.CrossRefGoogle Scholar
  6. Benson, D. L., Isackson, P. J., Gall, C. M., and Jones, E. G., 1991a, Differential effects of monocular deprivation on glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase gene expression in the adult monkey visual cortex, J. Neurosci. 11: 31–47.PubMedGoogle Scholar
  7. Benson, D. L., Isackson, P. J., Hendry, S. H. G., and Jones, E. G., 1991b, Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus and hypothalamus of the monkey, J. Neurosci. 11: 1540–1564.PubMedGoogle Scholar
  8. Benson, D. L., Isackson, P. J., Gall, G. M., and Jones, E. G., 1992, Gontrasting patterns in the localization of glutamic acid decarboxylase and Ca2+/calmodulin protein kinase gene expression in the rat central nervous system, Neuroscience 46: 825–850.PubMedCrossRefGoogle Scholar
  9. Blasdel, G. G., and Lund, J. S., 1983, Termination of afferent axons in macaque striate cortex, J. Neurosci. 3: 1389–1413.PubMedGoogle Scholar
  10. Blasdel, G. G., Lund, J. S., and Fitzpatrick, D., 1985, Intrinsic connections of macaque striate cortex: Axonal projections of cells outside lamina 4G, J. Neurosci. 5: 3350–3369.PubMedGoogle Scholar
  11. Blümke, I., Hof, P. R., Morrison, J. H., and Celio, M. R., 1990, Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans, J. Comp. Neurol. 301: 417–432.CrossRefGoogle Scholar
  12. Blümke, I., Hof, P. R., Morrison, J. H., and Celio, M. R., 1991, Parvalbumin in the monkey striate cortex: A quantitative immunoelectron-microscopy study, Brain Res. 554: 237–243.CrossRefGoogle Scholar
  13. Bu, D. R., Erlander, M. G., Hitz, B. C., Tillakaratne, N.J. K., Kaufman, D. L., Wagner-McPherson, C. B., Evans, G. A., and Tobin, A. J., 1992, Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene, Proc. Natl. Acad. Sci. USA 89: 2115–2119.PubMedCrossRefGoogle Scholar
  14. Campbell, A. W., 1905, Histological Studies on the Localization of Cerebral Function, Cambridge University Press, London.Google Scholar
  15. Campbell, M. J., Lewis, D. A., Benoit, R., and Morrison, J. H., 1987, Regional heterogeneity in the distribution of somatostatin-28-and somatostatin-28 1–12 immunoreactive profiles in monkey neocortex, J. Neurosci. 7: 1133–1144.PubMedGoogle Scholar
  16. Carder, R. K., Jones, E. G., and Hendry, S. H. C., 1991, Distribution of glutamate neurons and terminals in striate cortex of normal and monocularly deprived monkeys Soc. Neurosci. Abstr. 17: 115.Google Scholar
  17. Celio, M. R., 1986, Parvalbumin in most γ-aminobutyric acid-containing neurons of the rat cerebral cortex, Science 231: 995–997.PubMedCrossRefGoogle Scholar
  18. Celio, M. R., Scharer, L., Morrison, J. H., Norman, A. W., and Bloom, F. E., 1986, Calbindin immunoreactivity alternates with cytochrome c-oxidase-rich zones in some layers of the primate visual cortex, Nature 323: 715–717.PubMedCrossRefGoogle Scholar
  19. Clark, S. A., Allard, T, Jenkins, W. M., and Merzenich, M. M., 1988, Receptive fields in the bodysurface map in adult cortex defined by temporally correlated inputs, Nature 332: 444–445.PubMedCrossRefGoogle Scholar
  20. Conti, F. A., Rustioni, A., Petrusz, P., and Towle, A. C., 1987, Glutamate-positive neurons in the somatic sensory cortex of rats and monkeys, J. Neurosci. 7: 1887–1901.PubMedGoogle Scholar
  21. Conti, F., Fabri, M., and Manzoni, T., 1988, Immunocytochemical evidence for glutamatergic cortico-cortical connections in monkeys, Brain Res. 462: 148–153.PubMedCrossRefGoogle Scholar
  22. Cowan, W. M., 1970, Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system, in: Contemporary Research Methods in Neuroanatomy (W. J. H. Nauta and S. O. E. Ebbesson, eds.), Springer, Berlin, pp. 217–249.CrossRefGoogle Scholar
  23. Damas-Mora, J., Skelton-Robinson, M., and Jenner, F. A., 1982, The Charles Bonnet syndrome in perspective, Psychol. Med. 12: 251–261.PubMedCrossRefGoogle Scholar
  24. DeFelipe, J., and Farinas, I., 1993, The pyramidal neuron of the cerebral cortex. Morphological and chemical characteristics of the synaptic inputs, Prog. Neurobiol., in press.Google Scholar
  25. DeFelipe, J., and Jones, E. G., 1985, Vertical organization of γ-aminobutyric acid-accumulating intrinsic neuronal systems in monkey cerebral cortex, J. Neurosci. 5: 3246–3260.PubMedGoogle Scholar
  26. DeFelipe, J., and Jones, E. G., 1988, Cajal on the Cerebral Cortex, Oxford University Press, London.Google Scholar
  27. DeFelipe, J., and Jones, E. G., 1991, Parvalbumin immunoreactivity reveals layer IV of the monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminations, Brain Res. 562: 39–47.PubMedCrossRefGoogle Scholar
  28. DeFelipe, J., and Jones, E. G., 1992, High resolution light and electron microscopic immunocytochemistry of co-localized GAB A and calbindin D-28k in somata and double bouquet cell axons of monkey somatosensory cortex, Eur. J. Neurosci. 4: 46–60.PubMedCrossRefGoogle Scholar
  29. DeFelipe, J., Hendry, S. H. C., Jones, E. G., and Schmechel, D., 1985, Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex, J. Comp. Neurol. 231: 364–384.PubMedCrossRefGoogle Scholar
  30. DeFelipe, J., Conley, M., and Jones, E. G., 1986a, Long-range focal collateralization of axons arising from cortico-cortical cells in monkey sensory-motor cortex, J. Neurosci. 6: 3749–3766.PubMedGoogle Scholar
  31. DeFelipe, J., Hendry, S. H. C., and Jones, E. G., 1986b, A correlative electron microscopic study of basket cells and large GABAergic neurons in the monkey sensory-motor cortex, Neuroscience 7: 991–1009.CrossRefGoogle Scholar
  32. DeFelipe, J., Conti, F., Van Eyck, S. L., and Manzoni, T., 1988, Demonstration of glutamate-positive axon terminals forming asymmetric synapses in cat neocortex, Brain Res. 455: 162–165.PubMedCrossRefGoogle Scholar
  33. DeFelipe, J., Hendry, S. H. C., and Jones, E. G., 1989a, Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex, Proc. Natl. Acad. Sci. USA 86: 2093–2097.PubMedCrossRefGoogle Scholar
  34. DeFelipe, J., Hendry, S. H. C., and Jones, E. G., 1989b, Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity, Brain Res. 503: 49–54.PubMedCrossRefGoogle Scholar
  35. DeFelipe, J., Hendry, S. H. C., Hashikawa, T, Molinari, M., and Jones, E. G., 1990, A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons, Neuroscience 37: 655–673.PubMedCrossRefGoogle Scholar
  36. de Lima, A. D., and Morrison, J. H., 1989, Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey, J. Camp. Neurol. 283: 212–227.CrossRefGoogle Scholar
  37. Demeulemeester, H., Archens, L., Vandesande, F., Orban, G. A., Heizmann, C. W., and Pochet, R., 1991, Calcium binding proteins and neuropeptides as molecular markers of GABAergic interneurons in the cat visual cortex, Exp. Brain Res. 84: 538–544.PubMedCrossRefGoogle Scholar
  38. DeYoe, E. A., Hockfield, S., Garren, H., and Van Essen, D. C., 1990, Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey, Visual Neurosci. 5: 67–81.CrossRefGoogle Scholar
  39. Erondu, N. E., and Kennedy, M. B., 1985, Regional distribution of type II Ca2+/calmodulindependent protein kinase in rat brain, J. Neurosci. 5: 3270–3277.PubMedGoogle Scholar
  40. Fairén, A., and Valverde, F., 1980, A specialized type of neuron in the visual cortex of the cat: A Golgi and electron microscope study of chandelier cells, J. Comp. Neurol. 194: 761–779.PubMedCrossRefGoogle Scholar
  41. Fairén, A., DeFelipe, J., and Regidor, J., 1984, Nonpyramidal neurons. General account, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 201–253.Google Scholar
  42. Fariñas, I., and DeFelipe, J., 1991, Patterns of synaptic input on cortico-cortical and cortico-thalamic cells in the cat visual cortex. II. The axon initial segment, J. Comp. Neurol. 304: 70–77.PubMedCrossRefGoogle Scholar
  43. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex. 1: 1–47.PubMedCrossRefGoogle Scholar
  44. Ferrer, I., Tuñon, T., Soriano, E., del Rio, A., Iraizoz, I., Fonseca, M., and Guionnet, N., 1992, Calbindin immunoreactivity in normal human temporal cortex, Brain Res. 572: 33–41.PubMedCrossRefGoogle Scholar
  45. Ferster, D., 1986, Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex, J. Neurosci. 6: 1284–1301.PubMedGoogle Scholar
  46. Ferster, D., 1987, Origin of orientation-selective EPSPs in simple cells of cat visual cortex, J. Neurosci. 7: 1780–1791.PubMedGoogle Scholar
  47. Ferster, D., 1988, Spatially opponent excitation and inhibition in simple cells of the cat visual cortex, J. Neurosci. 8: 1172–1180.PubMedGoogle Scholar
  48. Fisken, R. A., Garey, L. J., and Powell, T. P. S., 1975, The intrinsic, association and commissural connections of area 17 of the visual cortex, Philos. Trans. R. Soc. London Ser. B 272: 487–536.CrossRefGoogle Scholar
  49. Fitzpatrick, D., and Diamond, I. T., 1980, Distribution of acetylcholinesterase in the geniculostriate system ofGalago senegalensis and Aotus tnvirgatus: Evidence for the origin of the reaction product in the lateral geniculate body, J. Comp. Neurol. 194: 703–720.PubMedCrossRefGoogle Scholar
  50. Fitzpatrick, D., Itoh, K., and Diamond, I. T, 1983, The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Samiri sciureus), J. Neurosci. 3: 673–702.PubMedGoogle Scholar
  51. Fitzpatrick, D., Lund, J. S., and Blasdel, G. G., 1985, Intrinsic connections of macaque striate cortex: Afferent and efferent connections of lamina 4C, J. Neurosci. 5: 3329–3349.PubMedGoogle Scholar
  52. Fitzpatrick, D., Lund, J. S., Schmechel, D. E., and Towles, A. C., 1987, Distribution of GABAergic neurons and axon terminals in the macaque striate cortex, J. Comp. Neurol. 264: 73–91.PubMedCrossRefGoogle Scholar
  53. Foote, S. L., and Morrison, J. H., 1984, Postnatal development of laminar innervation patterns by monoaminergic fibers in monkey (Macaca fascicularis) primary visual cortex, J. Neurosci. 4: 2667–2680.PubMedGoogle Scholar
  54. Freund, T. F., Martin, K. A. C., Smith, A. D., and Somogyi, P., 1983, Glutamate decarboxylaseimmunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of cat’s visual cortex, J. Comp. Neurol. 221: 263–278.PubMedCrossRefGoogle Scholar
  55. Freund, T. F., Martin, K. A. C., and Whitteridge, D., 1985, Innervation of cat visual areas 17 and 18 by physiologically identified X-and Y-type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements, J. Comp. Neurol. 242: 263–274.PubMedCrossRefGoogle Scholar
  56. Freund, T. F., Martin, K. A. C., Soltesz, I., Somogyi, P., and Whitteridge, D. I., 1989, Arborization pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey, J. Comp. Neurol. 289: 315–336.PubMedCrossRefGoogle Scholar
  57. Gaspar, P., Berger, B., Febvret, A., Vigny, A., Krieger-Poulet, M., and Borri-Voltattorni, C., 1987, Tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex: A novel catecholaminergic group, Neurosci. Lett. 80: 257–262.PubMedCrossRefGoogle Scholar
  58. Gilbert, C. D., and Wiesel, T. N., 1979, Morphology and intracortical projections of functionally characterized neurones in the cat visual cortex, Nature 280: 120–125.PubMedCrossRefGoogle Scholar
  59. Gilbert, C. D., and Wiesel, T. N., 1983, Clustered intrinsic connections in cat visual cortex, J. Neurosci. 3: 1116–1133.PubMedGoogle Scholar
  60. Gilbert, C. D., and Wiesel, T. N., 1989, Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex, J. Neurosci. 9: 2432–2442.PubMedGoogle Scholar
  61. Gilbert, C. D., and Wiesel, T. N., 1992, Receptive field dynamics in adult primary visual cortex, Nature 356: 150–152.PubMedCrossRefGoogle Scholar
  62. Graybiel, A. M., and Ragsdale, C. W., Jr., 1982, Pseudocholinesterase staining in the primary visual pathway of the macaque monkey, Nature 299: 439–442.PubMedCrossRefGoogle Scholar
  63. Gregory, R. L., 1966, Eye and Brain: The Psychology of Seeing, Weidenfeld & Nicholson, London, pp. 188–219.Google Scholar
  64. Haseltine, E. C., DeBruyn, E. J., and Casagrande, V. A., 1979, Demonstration of ocular dominance columns in Nissl-stained sections of monkey visual cortex following enucleation, Brain Res. 176: 153–158.PubMedCrossRefGoogle Scholar
  65. Haweth, R. S., Smith, E. L., III, Crawford, M. L. J., and Von Noorden, G. K., 1983, Effects of enucleation of the deprived eye on stimulus deprivation amblyopia in monkeys, Invest. Ophthalmol. Vis. Sci. 25: 10–17.Google Scholar
  66. Haweth, R. S., Smith, E. L., III, Duncan, G. C., Crawford, M. L. J., and Von Noorden, G. K., 1986, Effects of enucleation of the fixating eye on strabismic amblyopia in monkeys, Invest. Ophthalmol. Vis. Sci. 27: 246–254.Google Scholar
  67. Hayes, T. L., and Lewis, D. A., 1992, Nonphosphorylated neurofilament protein and calbindin immunoreactivity in layer III pyramidal neurons of human neocortex, Cereb. Cortex 2: 56–67.PubMedCrossRefGoogle Scholar
  68. Heinen, S. J., and Skavenski, A. A., 1991, Recovery of responses in foveal V1 neurons following bilateral foveal lesions in adult monkey, Exp. Brain Res. 83: 670–674.PubMedCrossRefGoogle Scholar
  69. Hendrickson, A. E., 1982, The orthograde axoplasmic transport autoradiographic technique and its implications for additional neuroanatomical analysis of the striate cortex, in: Cytochemical Methods in Neuroanatomy (V. Chan-Palay and S. L. Palay, eds.), Liss, New York, 1–16.Google Scholar
  70. Hendrickson, A. E., Wilson, J. R., and Ogren, M. P., 1978, The neuroanatomical organization of pathways between dorsal lateral geniculate nucleus and visual cortex in old and new world primates, J. Comp. Neurol. 182: 123–136.PubMedCrossRefGoogle Scholar
  71. Hendrickson, A. E., Hunt, S. P., and Wu, J. L., 1981, Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex, Nature 292: 605–607.PubMedCrossRefGoogle Scholar
  72. Hendrickson, A. E., Ogren, M., Vaughn, J. E., Barber, R. P., and Wu, J., 1983, Light and electron microscopic immunocytochemical localization of glutamic acid decarboxylase in monkey geniculate complex: Evidence for GABAergic neurons and synapses, J. Neurosci. 3: 1245–1262.PubMedGoogle Scholar
  73. Hendrickson, A. E., Mehra, R., and Tobin, A., 1988, In situ hybridization and immunocytochemical labeling GABA neurons during development of monkey visual cortex Soc. Neurosci. Abstr. 14: 188.Google Scholar
  74. Hendrickson, A. E., Van Brederode, J. F. M., Mulligan, K. A., and Celio, M. R., 1991, Development of the calcium-binding proteins parvalbumin and calbindin in monkey striate cortex, J. Comp. Neurol. 307: 626–646.PubMedCrossRefGoogle Scholar
  75. Hendry, S. H. C., 1991, Delayed reduction in GABA and GAD immunoreactivity of neurons in the adult monkey dorsal lateral geniculate nucleus following monocular deprivation or enucleation, Exp. Brain Res. 86: 47–59.PubMedCrossRefGoogle Scholar
  76. Hendry, S. H. C., and Carder, R. K., 1993, Laminar specific compartmentation of calbindin immunoreactivity in monkey and human visual cortex, Vis. neurosci., in press.Google Scholar
  77. Hendry, S. M. C., and Jones, E. G., 1981, Sizes and distribution of intrinsic neurons incorporating tritiated GABA in monkey sensory-motor cortex, J. Neurosci. 1: 390–405.PubMedGoogle Scholar
  78. Hendry, S. H. C., and Jones, E. G., 1986, Reduction in number of GABA immunostained neurons in deprived-eye dominance columns of monkey area 17, Nature 320: 750–753.PubMedCrossRefGoogle Scholar
  79. Hendry, S. H. C., and Jones, E. G., 1988, Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys, Neuron 1: 701–712.PubMedCrossRefGoogle Scholar
  80. Hendry, S. H. C., and Jones, E. G., 1989, Synaptic organization of GABA and GABA/tachykinin immunoreactive neurons in layer IVCß of monkey area 17, Soc. Neurosci. Abstr. 14: 1123.Google Scholar
  81. Hendry, S. H. C., and Kennedy, M. B., 1986, Immunoreactivity for a calmodulin-dependent protein kinase in selectively increased in macaque striate cortex after monocular deprivation, Proc. Natl. Acad. Sci. USA 83: 1536–1540.PubMedCrossRefGoogle Scholar
  82. Hendry, S. H. C., Houser, C. R., Jones, E. G., and Vaughn, J. E., 1983a, Synaptic organization of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex, J. Neurocytol. 12: 639–660.PubMedCrossRefGoogle Scholar
  83. Hendry, S. H. C., Jones, E. G., and Beinfeld, M. C., 1983b, Cholecystokinin-immunoreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels, Proc. Natl. Acad. Sa. USA 80: 2400–2404.CrossRefGoogle Scholar
  84. Hendry, S. H. C., Jones, E. G., DeFelipe, J., Schmechel, D., Brandon, C., and Emson, P. C., 1984a, Neuropeptide-containing neurons of the cerebral cortex are also GABAergic, Proc. Natl. Acad. Sci. USA 81: 6526–6530.PubMedCrossRefGoogle Scholar
  85. Hendry, S. H. C., Hockfield, S., Jones, E. G., and McKay, R., 1984b, Monoclonal antibody that identifies subsets of neurons in the central visual system of monkey and cat, Nature 307: 267–269.PubMedCrossRefGoogle Scholar
  86. Hendry, S. H. C., Jones, E. G., and Emson, P. C., 1984c, Morphology, distribution and synaptic relations of somatostatin-and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex, J. Neurosci. 4: 2497–2517.PubMedGoogle Scholar
  87. Hendry, S. H. C., Jones, E. G., Schwark, H. D., and Yan, J., 1987, Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex, J. Neurosci. 7: 1503–1519.PubMedGoogle Scholar
  88. Hendry, S. H. C., Jones, E. G., and Burstein, N., 1988a, Activity-dependent regulation of tachykininlike immunoreactivity in neurons of the monkey primary visual cortex, J. Neurosci. 8: 1225–1238.PubMedGoogle Scholar
  89. Hendry, S. H. C., Jones, E. G., Hockfield, S., and McKay, D. G., 1988b, Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus, J. Neurosci. 8: 518–542.PubMedGoogle Scholar
  90. Hendry, S. H. C., Jones, E. G., Emson, P. C., Lawson, D. E. M., Heizmann, C. W., and Streit, P., 1989, Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities, Exp. Brain Res. 76: 467–472.PubMedCrossRefGoogle Scholar
  91. Hendry, S. H. C, Fuchs, J., de Blas, A. L., and Jones, E. G., 1990, Distribution and plasticity of immunocytochemically localized GABA receptors in adult monkey visual cortex, J. Neurosci. 10: 2438–2450.PubMedGoogle Scholar
  92. Hevner, R. F., and Wong-Riley, M. T. T., 1990, Regulation of cytochrome oxidase protein levels by functional activity in the macaque monkey visual system, J. Neurosci. 10: 1331–1340.PubMedGoogle Scholar
  93. Hockfield, S., and Sur, M., 1990, Monoclonal antibody Gat-301 identifies Y-cells in the dorsal lateral geniculate nucleus of the cat, J. Comp. Neurol. 300: 320–331.PubMedCrossRefGoogle Scholar
  94. Hockfield, S., McKay, R. D., Hendry, S. H. C., and Jones, E. G., 1984, A surface antigen that identifies ocular dominance columns in the visual cortex and laminar features of the lateral geniculate nucleus, Cold Spring Harbor Symp. Quant. Biol. 35: 877–889.Google Scholar
  95. Hof, P. R., Cox, K., Young, W. G., Celio, M. R., Rogers, J., and Morrison, J. H., 1991, Parvalbuminimmunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease, J. Neuropathol. Exp. Neurol. 50: 451–462.PubMedCrossRefGoogle Scholar
  96. Hornung, J. P., Törk, I., and De Tribolet, N., 1989, Morphology of tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex, Exp. Brain Res. 76: 12–20.PubMedCrossRefGoogle Scholar
  97. Horton, J. C., 1984, Cytochrome oxidase patches: A new cytoarchitectonic feature of monkey visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 199–253.CrossRefGoogle Scholar
  98. Horton, J. C., and Hedley-White, E. T., 1984, Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 255–272.CrossRefGoogle Scholar
  99. Horton, J. C., and Hubel, D. H., 1981, Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey, Nature 292: 762–764.PubMedCrossRefGoogle Scholar
  100. Horton, J. C., Dagi, L. R., McCrane, E. P., and de Monasterio, F. M., 1990, Arrangement of ocular dominance columns in human visual cortex, Arch. Ophthalmol. 180: 1025–1031.CrossRefGoogle Scholar
  101. Houser, C. R., Hendry, S. H. C., Jones, E. G., and Vaughn, J. E., 1983, Morphological diversity of GABA neurons demonstrated immunocytochemically in monkey sensory-motor cortex, J. Neurocytol. 12: 617–638.PubMedCrossRefGoogle Scholar
  102. Houser, C. R., Vaughn, J. E., Hendry, S. H. C., Jones, E. G., and Peters, A., 1984, GABA neurons in the cerebral cortex, in: Cerebral Cortex, Volume 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 63–90.CrossRefGoogle Scholar
  103. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (London) 195: 215–243.Google Scholar
  104. Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey, J. Comp. Neurol. 146: 421–450.PubMedCrossRefGoogle Scholar
  105. Hubel, D. H., and Wiesel, T. N., 1977, Functional architecture of macaque monkey visual cortex, Proc. R. Soc. London Ser. B 198: 1–59.CrossRefGoogle Scholar
  106. Hubel, D. H., Wiesel, T. N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philos. Trans. R. Soc. London Ser. B 278: 377–409.CrossRefGoogle Scholar
  107. Humphrey, A. L., and Hendrickson, A. E., 1983, Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey, J. Neurosci. 3: 345–358.PubMedGoogle Scholar
  108. Huntley, G. W., and Jones, E. G., 1990, Cajal—Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins, J. Neurocytol. 19: 200–212.PubMedCrossRefGoogle Scholar
  109. Huntley, G. W., and Jones, E. G., 1991, Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: A correlative anatomic and physiological study, J. Neurophysiol. 66: 390–413.PubMedGoogle Scholar
  110. Huntley, G. W., Hendry, S. H. G., Killackey, H. P., Chalupa, L. M., and Jones, E. G., 1988, Temporal sequence of neurotransmitter expression by developing neurons of fetal monkey visual cortex, Dev. Brain Res. 43: 69–96.CrossRefGoogle Scholar
  111. Huntsman, M. M., Jones, E. G., Möhler, H., and Hendry, S. H. C., 1991, Distribution of immunocytochemically localized GABA receptor subunits in monkey and human visual cortex, Soc. Neurosci. Abstr. 17: 115.Google Scholar
  112. Itaya, S. K., Itaya, P. W., and Van Hoesen, G. W., 1984, Intracortical termination of the retinogeniculo-striate pathway studies with transsynaptic tracer (wheat germ agglutinin—horseradish peroxidase) and cytochrome oxidase staining in the macaque monkey, Brain Res. 304: 303–310.PubMedCrossRefGoogle Scholar
  113. Jenkins, W. M., Merzenich, M. M., Ochs, M. T., Allard, T., and Guic-Robles, E., 1990, Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation, J. Neurophysiol. 63: 82–104.PubMedGoogle Scholar
  114. Jones, E. G., 1975, Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey, J. Comp. Neurol. 160: 205–268.PubMedCrossRefGoogle Scholar
  115. Jones, E. G., 1984, Neurogliaform or spiderweb cells, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 409–418.CrossRefGoogle Scholar
  116. Jones, E. G., 1990, The role of afferent activity in the maintenance of primate neocortical function, J. Exp. Biol. 153: 155–176.PubMedGoogle Scholar
  117. Jones, E. G., and Hendry, S. H. C., 1984, Basket cells, in: Cerebral Cortex, Volume 1 (A. Peters, and E. G. Jones, eds.), Plenum Press, New York: pp. 309–336.CrossRefGoogle Scholar
  118. Jones, E. G., and Hendry, S. H. C, 1986, Co-localization of GABA and neuropeptides in neocortical neurons, Trends Neurosci. 10: 71–76.CrossRefGoogle Scholar
  119. Jones, E. G., DeFelipe, J., Hendry, S. H. C., and Maggio, J. E., 1988, A study of tachykininimmunoreactive neurons in monkey cerebral cortex, J. Neurosci. 8: 1206–1224.PubMedGoogle Scholar
  120. Kaas, J. H., Krubitzer, L. A., Chino, Y. M., Langston, A. L., Polley, E. H., and Blair, N., 1990, Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina, Science 248: 229–231.PubMedCrossRefGoogle Scholar
  121. Katz, L. C., Gilbert, C. D., and Wiesel, T. N., 1989, Local circuits and ocular dominance in monkey striate cortex, J. Neurosci. 9: 1389–1399.PubMedGoogle Scholar
  122. Kaufman, D. L., Houser, C. R., and Tobin, A. J., 1989, Two forms of glutamate decarboxylase (GAD), with different N-terminal sequences, have distinct intraneuronal distributions, Soc. Neurosci. Abstr. 15: 487.Google Scholar
  123. Kelly, P. T, and Montgomery, P. R., 1982, Subcellular localization of the 52,000 molecular weight major postsynaptic density protein, Brain Res. 223: 265–286.CrossRefGoogle Scholar
  124. Kelly, P. T, and Vernon, P., 1985, Changes in the subcellular distribution of calmodulin kinase II during brain development, Dev. Brain Res. 18: 221–224.CrossRefGoogle Scholar
  125. Kelly, P. T., McGuinness, T. L., and Greengard, P., 1984, Evidence that the major postsynaptic density protein is a component of a Ca+ +/calmodulin dependent protein kinase, Proc. Natl. Acad. Sci. USA 81: 945–949.PubMedCrossRefGoogle Scholar
  126. Kennedy, M. B., Bennett, M. K., and Erondu, N. E., 1983, Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase, Proc. Natl. Acad. Sci. USA 80: 7357–7361.PubMedCrossRefGoogle Scholar
  127. Kisvárday, Z. F., Cowey, A., and Somogyi, P., 1986, Synaptic relationships of a type of GABA-immunoreactive neuron (clutch cell), spiny stellate cells and lateral geniculate nucleus afferents in layer IVC of the monkey striate cortex, Neuroscience 19: 741–761.PubMedCrossRefGoogle Scholar
  128. Kisvárday, Z. F., Martin, K. A. C., Friedlander, M. J., and Somogyi, P., 1987, Evidence for interlaminar inhibitory circuits in the striate cortex of the cat, J. Comp. Neurol. 260: 1–19.PubMedCrossRefGoogle Scholar
  129. Kisvárday, Z. F., Gulyas, A., Beroukas, D., North, J. B., Chubb, I. W., and Somogyi, P., 1990, Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex, Brain 113: 793–812.PubMedCrossRefGoogle Scholar
  130. Kobayashi, K., Emson, P. C., and Mountjoy, C. Q., 1989, Vicia villosa lectin-positive neurones in human cerebral cortex. Loss in Alzheimer-type dementia, Brain Res. 498: 170–174.PubMedCrossRefGoogle Scholar
  131. Kosofsky, B. E., Molliver, M. E., Morrison, J. H., and Foote, S. L., 1984, The serotonin and norepinephrine innervation of primary visual cortex in the cynomolgus monkey (Macaca fascicularis), J. Comp. Neurol. 230: 168–178.PubMedCrossRefGoogle Scholar
  132. Kuljis, R. O., and Rakic, P., 1989a, Distribution of neuropeptide Y-containing perikarya and axons in various neocortical areas in the macaque monkey, J. Comp. Neurol. 280: 383–392.PubMedCrossRefGoogle Scholar
  133. Kuljis, R. O., and Rakic, P., 1989b, Neuropeptide Y-containing neurons are situated outside cytochrome oxidase puffs in macaque visual cortex, Visual Neurosci. 2: 57–62.CrossRefGoogle Scholar
  134. LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191: 1–51.PubMedCrossRefGoogle Scholar
  135. Lewis, D. A., and Lund, J. S., 1990, Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin-releasing factor-and parvalbumin-immunoreactive populations, J. Comp. Neurol. 293: 599–615.PubMedCrossRefGoogle Scholar
  136. Lewis, D. A., Foote, S. L., and Cha, C. I., 1989, Corticotropin-releasing factor immunoreactivity in monkey neocortex: An immunohistochemical analysis, J. Comp. Neurol. 290: 599–613.PubMedCrossRefGoogle Scholar
  137. Lin, J. W., Sugimore, M., Llinás, R. R., McGuinness, T. L., and Greengard, P., 1990, Effects of synapsin I and calcium/calmodulin-dependent protein kinase II on spontaneous neurotransmitter release in the squid giant synapse, Proc. Natl. Acad. Sci. USA 87: 8257–8261.PubMedCrossRefGoogle Scholar
  138. Livingstone, M. S., and Hubel, D. H., 1982, Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Natl. Acad. Sci. USA 79: 6098–6101.PubMedCrossRefGoogle Scholar
  139. Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  140. Llinás, R., McGuinness, T. L., Leonard, C. S., Sugimori, M., and Greengard, P., 1985, Intraterminal injection of synapsin I or calcium/calmodulin dependent protein kinase II alters neurotransmitter release at the squid giant synapse, Proc. Natl. Acad. Sä. USA 82: 3035–3039.CrossRefGoogle Scholar
  141. Lund, J. S., 1973, Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatto), J. Comp. Neurol. 147: 455–496.PubMedCrossRefGoogle Scholar
  142. Lund, J. S., 1987, Local circuit neurons of macaque striate cortex: I. Neurons of laminae 4C and 5A, J. Comp. Neurol. 257: 60–92.PubMedCrossRefGoogle Scholar
  143. Lund, J. S., 1990, Excitatory and inhibitory circuiting and laminar mapping strategies in the primary visual cortex of the monkey, in: Signal and Sense: Local and Clobal Order in Perceptual Maps (G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley-Liss, New York, pp. 51–82.Google Scholar
  144. Lund, J. S., and Yoshioka, T, 1991, Local circuit neurons of macaque monkey striate cortex: III. Neurons of laminae 4B, 4A, and 3B, J. Comp. Neurol. 311: 234–258.PubMedCrossRefGoogle Scholar
  145. Lund, J. S., Henry, G. H., McQueen, C. L., and Harvey, A. R., 1979, Anatomical organization of the visual cortex of the cat: A comparison with area 17 of the macaque monkey, J. Comp. Neurol. 184: 559–618.CrossRefGoogle Scholar
  146. Lund, J. S., Hawken, M. J., and Parker, A. J., 1988, Local circuit neurons of macaque monkey striate cortex: II. Neurons of laminae 5B and 6, J. Comp. Neurol. 276: 1–29.PubMedCrossRefGoogle Scholar
  147. McGuinness, T. L., Lai, Y., and Greengard, P., 1985, Ca2+/calmodulin-dependent protein kinase II. Isozymic forms from rat forebrain and cerebellum, J. Biol. Chem. 260: 1696–1704.PubMedGoogle Scholar
  148. McGuinness, T. L., Brady, S. T., Gruner, J. A., Sugimori, M., Llinás, R., and Greengard, P., 1989, Phosphorylation-dependent inhibition by synapsin I of organelle movement in squid axoplasm, J. Neurosci. 9: 4138–4149.PubMedGoogle Scholar
  149. McGuire, B. A., Gilbert, C. D., Rivlin, P. K., and Wiesel, T. N., 1991, Targets of horizontal connections in macaque primary visual cortex, J. Comp. Neurol. 305: 370–392.PubMedCrossRefGoogle Scholar
  150. McGuire, P. K., Hockfield, S., and Goldman-Rakic, P. S., 1989, Distribution of Cat-301 immunoreactivity in the frontal and parietal lobes of the macaque monkey, J. Comp. Neurol. 288: 280–296.PubMedCrossRefGoogle Scholar
  151. McNamara, M. E., Heros, R. C., and Boiler, F., 1982, Visual hallucinations in blindness: The Charles Bonnet syndrome, Int. J. Neurosci. 17: 13–15.PubMedCrossRefGoogle Scholar
  152. Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T, Nicoll, R. A., and Waxham, M. N., 1989, An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation, Nature 340: 554–557.PubMedCrossRefGoogle Scholar
  153. Malinow, R., Schulman, H., and Tsien, R. W., 1989, Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP, Science 245: 862–866.PubMedCrossRefGoogle Scholar
  154. Marin-Padilla, M., 1969, Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: A Golgi study, Brain Res. 14: 633–646.PubMedCrossRefGoogle Scholar
  155. Marin-Padilla, M., 1987, The chandelier cell of the human visual cortex: A Golgi study, J. Comp. Neurol. 256: 61–70.PubMedCrossRefGoogle Scholar
  156. Martin, K. A. C., 1984, Neuronal circuits in cat striate cortex, in: Cerebral Cortex, Volume 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 241–283.CrossRefGoogle Scholar
  157. Mates, S. L., and Lund, J. S., 1983, Neuronal composition and development in lamina 4C of monkey striate cortex, J. Comp. Neurol. 221: 60–90.PubMedCrossRefGoogle Scholar
  158. Meinicke, D. L., and Rakic, P., 1989, The temporal relationship of GABA and GABA-A/benzodiazepine receptor expression in neurons of the visual cortex of developing monkeys, Soc. Neurosci. Abstr. 15: 1335.Google Scholar
  159. Merzenich, M. M., Kaas, J. H., Wall, J., Nelson, R. J., Sur, M., and Felleman, D., 1983a, Topographic reorganization of somatosensory cortical areas 3B and 1 in adult monkeys following restricted deafferentation, Neuroscience 8: 33–56.PubMedCrossRefGoogle Scholar
  160. Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J., and Felleman, D. J., 1983b, Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys, Neuroscience 10: 639–666.PubMedCrossRefGoogle Scholar
  161. Merzenich, M. M., Nelson, R. J., Kaas, J. H., Stryker, M. P., Jenkins, W. M., Zook, J. M., Cynader, M. S., and Schoppmann, A., 1987, Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys, J. Comp. Neurol. 258: 281–296.PubMedCrossRefGoogle Scholar
  162. Miller, S. G., and Kennedy, M. B., 1985, Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the post-synaptic density fraction, J. Biol. Chem. 260: 9039–9046.PubMedGoogle Scholar
  163. Montero, V. M., and Zempel, J., 1986, The proportion and size of GABA-immunoreactive neurons in the magnocellular and parvicellular layers of the lateral geniculate nucleus of the rhesus monkey, Exp. Brain Res. 62: 215–223.PubMedCrossRefGoogle Scholar
  164. Morrison, J. H., and Foote, S. L., 1986, Noradrenergic and serotoninergic innervation of cortical, thalamic and tectal visual structures in Old and New World monkeys, J. Comp. Neurol. 243: 117–138.PubMedCrossRefGoogle Scholar
  165. Morrison, J. H., Foote, S. L., Molliver, M. E., Bloom, F. E., and Lidov, H. G. W., 1982, Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: An immunohistochemical study, Proc. Natl. Acad. Sci. USA 79: 2401–2405.PubMedCrossRefGoogle Scholar
  166. Mulligan, K. A., van Brederode, J. F. M., and Hendrickson, A. E., 1989, The lectin Vicia villosa labels a distinct subset of GABAergic cells in macaque visual cortex, Visual Neurosci. 2: 63–72.CrossRefGoogle Scholar
  167. Myers, R. E., 1962, Commissural connections between occipital lobes of the monkey, J. Comp. Neurol. 118: 1–16.PubMedCrossRefGoogle Scholar
  168. Naegle, J. R., and Barnstable, C. J., 1989, Molecular determinants of GABAergic local-circuit neurons in the visual cortex, Trends Neurosci. 12: 28–34.CrossRefGoogle Scholar
  169. Nakagawa, F., Schulte, B. A., and Spicer, S. S., 1986, Selective cytochemical demonstration of glycoconjugate-containing terminal N-acetylgalactosamine on some brain neurons, J. Comp. Neurol. 243: 280–290.PubMedCrossRefGoogle Scholar
  170. Newsome, W. T., and Allman, J. M., 1980, Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis, J. Comp. Neurol. 194: 209–233.PubMedCrossRefGoogle Scholar
  171. Ogren, M. P., and Hendrickson, A. E., 1977, The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey, Brain Res. 137: 343–350.PubMedCrossRefGoogle Scholar
  172. O’Kusky, J., and Colonnier, M., 1982, A laminar analysis of the number of neurons, glia and synapses in the visual cortex (area 17) of adult macaque monkeys, J. Comp. Neurol. 210: 278–290.PubMedCrossRefGoogle Scholar
  173. Ouimet, C. C., McGuinness, T. L., and Greengard, P., 1984, Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain, Proc. Natl. Acad. Sci. USA 81: 5604–5608.PubMedCrossRefGoogle Scholar
  174. Peters, A., and Saint-Marie, R. L., 1984, Smooth and sparsely spinous cells forming local axonal plexuses, in: Cerebral Cortex, Volume 1 (A. Peters and E.G. Jones, eds.), Plenum Press, New York, pp. 419–446.Google Scholar
  175. Peters, A., Proskauer, C. C., and Ribak, C. E., 1982, Chandelier cells in rat visual cortex, J. Comp. Neurol. 206: 397–416.PubMedCrossRefGoogle Scholar
  176. Rakic, P., Bourgeois, J., Eckenhoff, M. F., Zecevic, N., and Goldman-Rakic, P., 1986, Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science 232: 232–235.PubMedCrossRefGoogle Scholar
  177. Rakic, P., Goldman-Rakic, P. S., and Gallagher, D., 1988, Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex, J. Neurosci. 8: 3670–3690.PubMedGoogle Scholar
  178. Ramachandran, V. S., and Gregory, R. L., 1991, Perceptual filling in of artificially induced scotomas in human vision, Nature 350: 699–702.PubMedCrossRefGoogle Scholar
  179. Ramoa, A. S., Paradiso, M. A., and Freeman, R. D., 1988, Blockade of intracortical inhibition in kitten striate cortex: Effects on receptive field properties and associated loss of ocular dominance plasticity, Exp. Brain Res. 73: 285–298.PubMedCrossRefGoogle Scholar
  180. Ramon y Cajal, S., 1899a, Estudios sobre la corteza cerebral humana I: Corteza visual, Rev. Trim. Micrograf. Madrid. 4:1–63. Translated in: DeFelipe, J., and Jones, E. G., 1988, Cajal on the Cerebral Cortex, Oxford University Press, London, pp. 147-187.Google Scholar
  181. Ramon y Cajal, S., 1899b, Estudios sobre la corteza cerebral humana II: Estructura de la corteza motriz del hombre y mamíferos superiores, Rev. Trim. Micrograf. Madrid 4: 117–200. Translated in: DeFelipe, J., and Jones, E. G., 1988, Cajal on the Cerebral Cortex, Oxford University Press, London, pp. 188-250.Google Scholar
  182. Reiter, H. O., and Stryker, M. P., 1988, Neural plasticity without postsynaptic action potentials: Less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited, Proc. Natl. Acad. Sci. USA 85: 3623–3627.PubMedCrossRefGoogle Scholar
  183. Rezak, M., and Benevento, L. A., 1979, A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey, Brain Res. 167: 19–40.PubMedCrossRefGoogle Scholar
  184. Ribak, C. E., 1978, Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase, J. Neurocytol. 7: 461–478.PubMedCrossRefGoogle Scholar
  185. Roberts, E., 1975, GABA in nervous system function—An overview, in: The Nervous System, Volume 1 (D. B. Tower, ed.), New York, Raven, pp. 541–552.Google Scholar
  186. Rockel, A. J., Hiorns, R. W., and Powell, T. P. S., 1980, The basic uniformity in structure of the neocortex, Brain 103: 221–244.PubMedCrossRefGoogle Scholar
  187. Sanes, J. N., Suner, S., Lando, J. F., and Donoghue, J. P., 1988, Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury, Proc. Natl. Acad. Sci. USA 85: 2003–2007.PubMedCrossRefGoogle Scholar
  188. Schiffmann, S., Campistrom, G., Tugendhaft, P., Brotchi, J., Flament-Durand, J., Geffard, M., and Vanderhaeghen, J. J., 1988, Immunocytochemical detection of GABAergic nerve cells in the human temporal cortex using a direct 7-aminobutyric acid antiserum, Brain Res. 442: 270–278.PubMedCrossRefGoogle Scholar
  189. Schmechel, D. E., Vickrey, B. G., Fitzpatrick, D., and Elde, R. P., 1984, GABAergic neurons of mammalian cerebral cortex: Widespread subclass defined by somatostatin content, Neurosci. Lett. 47: 227–232.PubMedCrossRefGoogle Scholar
  190. Schulman, H., 1984, Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulindependent protein kinase, J. Cell Biol. 99: 11–19.PubMedCrossRefGoogle Scholar
  191. Shatz, C. J., 1990, Impulse activity and the patterning of connections during CNS development, Neuron 5: 745–756.PubMedCrossRefGoogle Scholar
  192. Shaw, C., and Cynader, M. C., 1986, Laminar distribution of receptors in monkey (Macaca fascicularis) geniculostriate system, J. Comp. Neurol. 248: 301–312.PubMedCrossRefGoogle Scholar
  193. Shaw, C., Cameron, L., March, D., Cynader, M. C., and Hendrickson, A., 1991, Pre-and postnatal development of GABA receptors in Macaca monkey visual cortex, J. Neurosci. 11: 3943–3959.PubMedGoogle Scholar
  194. Shields, S. M., Ingebritsen, T. S., and Kelly, P. T., 1985, Identification of protein phosphate I in synaptic junctions: Dephosphorylation of endogenous calmodulin-dependent kinase II and synaptic-enriched phosphoproteins, J. Neurosci. 5: 3414–3422.PubMedGoogle Scholar
  195. Sillito, A. M., 1974, Modification of the receptive field properties of neurons in the visual cortex by bicuculline, a GABA antagonist, J. Physiol. (London) 239: 36–37P.Google Scholar
  196. Sillito, A. M., 1975a, The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat, J. Physiol. (London) 250: 305–329.Google Scholar
  197. Sillito, A. M., 1975b, The effectiveness of bicuculline as an antagonist of GABA and visually evoked inhibition in the cat’s striate cortex, J. Physiol. (London) 250: 287–304.Google Scholar
  198. Sillito, A. M., 1984, Functional considerations of the operation of GABAergic inhibitory processes in the visual cortex, in: Cerebral Cortex, Volume 2 (E. G. Jones, and A. Peters, eds.), Plenum Press, New York, pp. 91–117.CrossRefGoogle Scholar
  199. Sillito, A. M., Kemp, J. A., and Blakemore, C., 1981, The role of GABAergic inhibition in the cortical effects of monocular deprivation, Nature 291: 318–320.PubMedCrossRefGoogle Scholar
  200. Sloper, J. J., and Powell, T. P. S., 1979, A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices, Philos. Trans. R. Soc. London Ser. B 285: 173–197.CrossRefGoogle Scholar
  201. Somogyi, P., 1977, A specific “axo-axonal” interneuron in the visual cortex of the rat, Brain Res. 136: 345–350.PubMedCrossRefGoogle Scholar
  202. Somogyi, P., 1979, An interneuron making synapses specifically on the axon initial segment (AIS) of pyramidal cells in the cerebral cortex of the cat, J. Physiol. (London) 296:18–19.Google Scholar
  203. Somogyi, P., and Cowey, A., 1981, Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey, J. Comp. Neurol. 195: 547–566.PubMedCrossRefGoogle Scholar
  204. Somogyi, P., and Cowey, A., 1984, Double bouquet cells, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 337–360.Google Scholar
  205. Somogyi, P., Cowey, A., Halasz, N., and Freund, T. F., 1981a, Vertical organization of neurones accumulating 3H-GABA in visual cortex of rhesus monkey, Nature 294: 761–763.PubMedCrossRefGoogle Scholar
  206. Somogyi, P., Freund, T. F., Helasz, N., and Kisvárday, Z. F., 1981b, Selectivity of neuronal [3H]GABA accumulation in the visual cortex as revealed by Golgi staining of the labeled neurons, Brain Res. 225: 431–436.PubMedCrossRefGoogle Scholar
  207. Somogyi, P., Freund, T. F., and Cowey, A., 1982, The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey, Neuroscience 7: 2577–2607.PubMedCrossRefGoogle Scholar
  208. Somogyi, P., Cowey, A., Kisvárday, Z. F., Freund, T. F., and Szentágothai, J., 1983a, Retrograde transport of γ-amino[3H]butyric acid reveals specific interlaminar connections in the striate cortex of monkey, Proc. Natl. Acad. Sci. USA 80: 2385–2389.PubMedCrossRefGoogle Scholar
  209. Somogyi, P., Kisvárday, Z. F., Martin, K. A. C., and Whitteridge, D., 1983b, Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat, Neuroscience 10: 261–294.PubMedCrossRefGoogle Scholar
  210. Somogyi, P., Freund, T. F., Hodgson, A. J., Somogyi, J., Beroukas, D., and Chubb, I. W., 1985, Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of cats, Brain Res. 332: 143–149.PubMedCrossRefGoogle Scholar
  211. Stryker, M. P., Jenkins, W. M., and Merzenich, M. M., 1987, Anesthetic state does not affect the map of the hand representation within area 3b somatosensory cortex in owl monkey, J. Comp. Neurol. 258: 208–303.CrossRefGoogle Scholar
  212. Sur, M., Frost, D. O., and Hockfield, S., 1988, Expression of a surface-associated antigen on Y-cells in the cat lateral geniculate nucleus is regulated by visual experience, J. Neurosci. 8: 874–882.PubMedGoogle Scholar
  213. Takeuchi, Y., and Sano, Y, 1983, Immunohistochemical demonstration of serotonin nerve fibers in the neocortex of the monkey (Macaca fuscata), Anat. Embryol. 166: 155–168.PubMedCrossRefGoogle Scholar
  214. Takeuchi, Y., and Sano, Y., 1984, Serotonin nerve fibers in the primary visual cortex of the monkey quantitative and immunoelectron-microscopical analysis, Anat. Embryol. 169: 1–8.PubMedCrossRefGoogle Scholar
  215. Tigges, M., Tigges, J., McDonald, J. K., Slattery, M., and Fernandes, A., 1989, Postnatal development of neuropeptide Y-like immunoreactivity in area 17 of normal and visually deprived rhesus monkeys, Visual Neurosci. 2: 315–328.CrossRefGoogle Scholar
  216. Tootell, R. B. H., Hamilton, S. L., and Switkes, E., 1988a, Functional anatomy of macaque striate cortex. IV. Contrast and mango-parvo streams, J. Neurosci. 8: 1594–1609.PubMedGoogle Scholar
  217. Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., and De Valois, R. L., 1988b, Functional anatomy of macaque striate cortex. V. Spatial frequency, J. Neurosci. 8: 1610–1624.PubMedGoogle Scholar
  218. Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., De Valois, R. L., and Switkes, E., 1988c, Functional anatomy of macaque striate cortex. III. Color, J. Neurosci. 8: 1569–1593.PubMedGoogle Scholar
  219. Towns, L. C., Tigges, J., and Tigges, M., 1990, Termination of thalamic intralaminar nuclei afferents in visual cortex of squirrel monkey, Visual Neurosci. 5: 151–154.CrossRefGoogle Scholar
  220. Trottier, S., Geffard, M., and Evrard, B., 1989, Co-localization of tyrosine hydroxylase and GABA immunoreactivities in human cortical neurons, Neurosci. Lett. 106: 76–82.PubMedCrossRefGoogle Scholar
  221. Trusk, T. C., Kaboord, W. S., and Wong-Riley, M. T. T., 1990, Effects of monocular enucleation, tetrodotoxin, and lid suture on cytochrome-oxidase reactivity in supragranular puffs of adult macaque striate cortex, Visual Neurosci. 4: 185–204.CrossRefGoogle Scholar
  222. Ts’o, D. Y., and Gilbert, C. D., 1988, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosci. 8: 1712–1727.Google Scholar
  223. Ts’o, D. Y, Gilbert, C. D., and Wiesel, T. N., 1986, Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis, J. Neurosci. 6: 1160–1170.PubMedGoogle Scholar
  224. Tsumoto, T, and Sato, H., 1985, GABAergic inhibition and orientation selectivity of neurons in the kitten visual cortex at the time of eye opening, Vision Res. 25: 383–388.PubMedCrossRefGoogle Scholar
  225. Tsumoto, T, Masui, H., and Sato, H., 1986, Excitatory amino acid transmitters in neuronal circuits of the cat visual cortex, J. Neurophysiol. 55: 469–483.PubMedGoogle Scholar
  226. Tsumoto, T., Hagihara, K., Sato, H., and Hata, Y., 1987, NMDA receptors in the visual cortex of kittens are more effective than those of adult cats, Nature 327: 513–514.PubMedCrossRefGoogle Scholar
  227. Valverde, F., 1971, Short axon neuronal subsystems in the visual cortex of the monkey, Int. J. Neurosci. 1: 181–197.PubMedCrossRefGoogle Scholar
  228. Van Brederode, J. F. M., Mulligan, K. A., and Hendrickson, A. E., 1990, Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex, J. Neurosci. 298: 1–22.Google Scholar
  229. Vulliet, P. R., Woodgett, J. R., and Cohen, P., 1984, Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase, J. Biol. Chem. 259: 13,680–13,683.PubMedGoogle Scholar
  230. Wall, J. T., Kaas, J. H., Sur, M., Nelson, R. J., Felleman, D. J., and Merzenich, M. M., 1986, Functional reorganization in somatosensory cortical areas 3b and 1 of adult monkeys after median nerve repair: Possible relationships to sensory recovery in humans, J. Neurosci. 6: 218–233.PubMedGoogle Scholar
  231. Weinberger, L. M., and Grant, F. C., 1940, Visual hallucinations and their neuro-optical correlates, Arch. Ophthalmol. 23: 166–199.CrossRefGoogle Scholar
  232. Werner, L., Winkelmann, E., Koglin, A., Neser, J., and Rodewohl, H., 1989, A Golgi deimpregnation study of neurons in the rhesus monkey visual cortex (areas 17 and 18), Anat. Embryol. 180: 583–597.PubMedCrossRefGoogle Scholar
  233. White, N. J., 1980, Complex visual hallucinations in partial blindness due to eye disease, Br. J. Psychiatry 136: 284–286.PubMedCrossRefGoogle Scholar
  234. Williams, S. M., Goldman-Rakic, P. S., and Leranth, C., 1992, The synaptology of parvalbuminimmunoreactive neurons in the primate prefrontal cortex, J. Comp. Neurol. 320: 353–369.PubMedCrossRefGoogle Scholar
  235. Winfield, D. A., Rivera-Dominguez, M., and Powell, T. P. S., 1982, The termination of geniculocortical fibres in area 17 of the visual cortex in the macaque monkey, Brain Res. 231: 19–32.PubMedCrossRefGoogle Scholar
  236. Wolf, W., Hicks, T. P., and Albus, K., 1986, The contribution of GABA-mediated inhibitory mechanisms to visual response properties of neurons in the kitten’s striate cortex, J. Neurosci. 6: 2779–2795.PubMedGoogle Scholar
  237. Wong-Riley, M. T. T., and Carroll, E. W., 1984a, Effect of impulse blockage on cytochrome oxidase activity in monkey visual system, Nature 307: 262–264.PubMedCrossRefGoogle Scholar
  238. Wong-Riley, M. T. T., and Carroll, E. W., 1984b, Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in V II prestriate cortex of the squirrel monkey, J. Comp. Neurol. 222: 18–37.PubMedCrossRefGoogle Scholar
  239. Wong-Riley, M. T. T., and Norton, T. T., 1988, Histochemical localization of cytochrome oxidase activity in the visual system of the tree shrew: Normal patterns and the effect of retinal impulse blockage, J. Comp. Neurol. 272: 562–578.PubMedCrossRefGoogle Scholar
  240. Yamashita, A., Hayashi, M., Shimizu, K., and Oshima, K., 1989, Ontogeny of somatostatin in cerebral cortex of macaque monkey: An immunohistochemical study, Dev. Brain Res. 45: 103–111.CrossRefGoogle Scholar
  241. Zeki, S. M., 1970, Interhemispheric connections of prestriate cortex of monkey, Brain Res. 19: 63–75.PubMedCrossRefGoogle Scholar
  242. Zezula, J., Cortea, R., Probst, A., and Palacios, J. M., 1988, Benzodiazepine receptor sites in the human brain: Autoradiographic mapping, Neuroscience 25: 771–796.PubMedCrossRefGoogle Scholar
  243. Zielinski, B., and Hendrickson, A., 1990, Development of synapses in macaque monkey striate cortex shows an “inside-out” pattern, Soc. Neurosci. Abstr. 14: 494.Google Scholar
  244. Zinner-Feyerabend, M., and Braak, E., 1991, Glutamic acid decarboxylase (GAD)-immunoreactive structures in the adult human lateral geniculate nucleus, Anat. Embryol. 183: 111–117.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • E. G. Jones
    • 1
  • S. H. C. Hendry
    • 1
  • J. DeFelipe
    • 1
  • D. L. Benson
    • 1
  1. 1.Department of Anatomy and NeurobiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations