The Role of Striate Cortex

Evidence from Human Lesion Studies
  • Matthew Rizzo
Part of the Cerebral Cortex book series (CECO, volume 10)


Much of what is known about the role of human striate cortex in vision comes from the study of dysfunction in patients with specific lesions of visual pathways, from the retina to the occipital lobe and the adjoining temporal and parietal regions. That evidence depends on neuro-ophthalmological, neuropsychological, and psychophysical techniques. The neuroanatomy is provided, in vivo, by modern neuroimaging techniques such as magnetic resonance imaging (MRI) (Damasio and Damasio, 1989; Damasio and Frank, 1992), and (less often) at autopsy. Positron emission tomography (PET) studies offer another window on regional localization and visual function. Comparative anatomical studies on the functional organization of the visual system, particularly in the monkey, also provide insights into the corresponding organization in the human. This chapter examines these converging lines of evidence in the context of what they tell us about the role of human striate cortex [which is also referred to as the primary visual cortex, the calcarine cortex, area 17 of Brodmann (1909), and more recently as area V1] (see Fig. 1). The emphasis in this chapter is on human brain lesion studies. In the introductory section, we start with a definition of human visual areas and deficits, and follow with comments on the human brain lesion method applied to vision, on human—monkey homologies, and on subcortical inputs to V1.


Occipital Lobe Visual Field Defect Positron Emission Tomog Data Striate Cortex Middle Temporal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albright, T. D., 1991, Color and the integration of motion signals, Neurosci. Trends 14: 266–269.Google Scholar
  2. Allergan Humphrey, 1987, The Visual Field Analyzer Primer, 2nd ed., San Leandro.Google Scholar
  3. Allman, J. M., 1977, Evolution of the visual system in early primates, in: Progress in Psychology, Physiology, and Psychiatry (J. Sprague and A. N. Epstein, eds.), Academic Press, New York, pp. 1–53.Google Scholar
  4. Anderson, D. R., 1982, Testing the Field of Vision, Mosby, St. Louis, pp. 22–42, 180-196.Google Scholar
  5. Anderson, S., and Rizzo, M., 1992, Visual hallucinations following occipital lobe damage, International Neuropsychological Society Meeting, San Diego, Calif., February 5–8, 1992.Google Scholar
  6. Anton, F., 1899, Ueber die Selbstwharnehmungen der Herderkrankungen des Gehirns durch den Kranken bei Rinderblindheit und Rindentaubheit, Arch. Psychiatr. 32: 86–127.Google Scholar
  7. Atkin, A., Bodis-Wollner, I., Wolstein, M., Moss, A., and Podos, S. M., 1979, Abnormalities of contrast sensitivity in glaucoma, Am. J. Ophthalmol. 88: 205–213.PubMedGoogle Scholar
  8. Baker, C. L., Hess, R. F., and Zihl, J., 1991, Residual motion perception in a ‘motion blind’ patient assessed with limited-lifetime random dot stimuli. J. Neurosci. 11: 454–461.PubMedGoogle Scholar
  9. Bálint, R., 1909, Seelenlahmung des “Schauens”, optische Ataxie, raumliche Storung der Aufmerksamkeit, Monatsschr. Psychiatr. Neurol. 25: 51–181.Google Scholar
  10. Balliet, R., Blood, K. M., and Bach-y-Rita, P., 1985, Visual field rehabilitation in the cortically blind? J. Neurol. Neurosurg. Psychiatry 48: 1113–1124.PubMedGoogle Scholar
  11. Bassi, C. J., and Lehmkuhle, S., 1990, Clinical implications of parallel visual pathways, J. Am. Optom. Assoc. 61: 98–110.PubMedGoogle Scholar
  12. Benton, A. L., and Van Allen, M. W., 1985, Visuoperceptual, visuospatial, and visuoconstructive disorders, in: Clinical Neuropsychology, 2nd ed. (K. M. Heilman and E. Valenstein, eds.), Oxford University Press, London, pp. 151–186.Google Scholar
  13. Benton, S., Levy, I., and Swash, M., 1980, Vision in the temporal crescent in occipital infarction, Brain 103: 83–97.PubMedGoogle Scholar
  14. Blythe, I. M., Kennard, C., and Ruddock, K. H., 1987, Residual vision in patients with retrogeniculate lesions of the visual pathways, Brain 110: 887–905.PubMedGoogle Scholar
  15. Bosley, T. M., Dann, R., Silver, F. L., Alavi, A., Kushner, M., Chawluk, J. B., Savino, P. J., Sergott, R. C., Schatz, N. J., and Reivich, M., 1987, Recovery of vision after ischemic lesions: Positron emission tomography, Ann. Neurol. 21(5): 444–450.PubMedGoogle Scholar
  16. Boussaoud, D., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque, J. Comp. Neurol. 296: 462–495.PubMedGoogle Scholar
  17. Boynton, R. M., and Kambe, N., 1980, Chromatic difference steps of moderate size measured along theoretically critical axes, Color Res. Appl. 5: 13–23.Google Scholar
  18. Brindley, G. S., 1970, Introduction to sensory experiments, in: Physiology of the Retina and Visual Pathway, 2nd ed., Williams and Wilkins, Baltimore, pp. 133–138.Google Scholar
  19. Brodmann, K., 1909, Vergleichende Lokalisatwnslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, J. A. Barth, Leipzig.Google Scholar
  20. Buffington, J., Nawrot, M., and Sekuler, R., 1987, MacCinematogram 1.07d, software survey section, Vision Res. 27: 716–718.Google Scholar
  21. Bunt, A. H., and Minckler, D. S., 1977, Foveal sparing, Arch. Ophthalmol 95: 1445–1447.PubMedGoogle Scholar
  22. Burkhalter, A., and Bernardo, K. L., 1989, Organization of corticocortical connections in human visual cortex, Proc. Natl. Acad. Sci, USA 86: 1071–1075.PubMedGoogle Scholar
  23. Campion, J., Latto, R., and Smith, Y. M., 1983, Is blindsight an effect of scattered light, spared cortex, and near-threshold vision? Behav. Brain Sci. 6: 423–448.Google Scholar
  24. Celesia, G. G., Bushnell, M. D., Toleikis, S. C., and Brigell, M. G., 1991, Cortical blindness and residual vision: Is the “second” visual system capable of more than rudimentary visual perception? Neurology 41: 862–869.PubMedGoogle Scholar
  25. Clark, S., and Miklossy, J., 1990, Occipital cortex in man: Organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas, J. Comp. Neurol. 298: 188–214.Google Scholar
  26. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., and Petersen, S. E., 1991, Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography, J. Neurosci. 11: 2382–2402.Google Scholar
  27. Cowey, A., and Stoerig, P., 1991, The neurobiology of blindsight, Trends Neurosci. 14: 140–145.PubMedGoogle Scholar
  28. Critchley, M., 1965, Acquired anomalies of colour perception of central origin, Brain 88: 711–724.PubMedGoogle Scholar
  29. Cusick, C., and Kass, J., 1988, Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys, Visual Neurosci. 1: 211–237.Google Scholar
  30. Damasio, A. R., 1985a, Disorders of complex visual processing: Agnosias, achromatopsia, Balint’s syndrome, and related difficulties of orientation and construction, in: Principles of Behavioral Neurology (M.-M. Mesulam, ed.), Davis, Philadelphia, pp. 259–288.Google Scholar
  31. Damasio, A. R., 1985b, Prosopagnosia, Trends Neurosci. 8: 132–135.Google Scholar
  32. Damasio, A., Yamada, T., Damasio, H., Corbett, J., and McKee, J., 1980, Central achromatopsia: Behavioral, anatomic and physiologic aspects, Neurology 30: 1064–1071.PubMedGoogle Scholar
  33. Damasio, H., and Damasio, A., 1989, Lesion Analysis in Neuropsychology, Oxford University Press, London.Google Scholar
  34. Damasio, H., and Frank, R., 1992, Three-dimensional in vivo mapping of brain lesions in humans, Arch. Neurol. 49: 137–143.PubMedGoogle Scholar
  35. Denny-Brown, D., and Chambers, R. A., 1955, Visuo-motor function in the cerebral cortex, J. Nerv. Ment. Dis. 121: 288–289.Google Scholar
  36. Derrington, A. M., Krauskopf, J., and Lennie, P., 1984, Chromatic mechanisms in lateral geniculate nucleus of macaque, J. Physiol. (London) 357: 241–265.Google Scholar
  37. Desimone, R., Schein, S., Moran, J., and Ungerleider, L., 1985, Contour, color and shape analysis beyond the striate cortex, Vision Res. 25: 441–452.PubMedGoogle Scholar
  38. De Valois, R. L., and De Valois, K. K., 1988, Sensitivity to spatial variations, in: Spatial Vision, Oxford University Press, London, pp. 212–238.Google Scholar
  39. Dobelle, W. H., Turkei, J., Henderson, D. C., and Evans, J. R., 1979, Mapping the representation of the visual field by electrical stimulation of human visual cortex, Am. J. Ophthalmol. 88: 727–735.PubMedGoogle Scholar
  40. Dowling, J. E., 1987, The Retina: An Approachable Part of the Brain, Belknap, Harvard.Google Scholar
  41. Drevets, W. C., Videen, T. O., MacCleod, A. K., Haller, J. W., and Raichle, M. E., 1992, PET images of blood flow changes during anxiety: Correction, Science 256: 1696.PubMedGoogle Scholar
  42. Ewens, G. F. W., 1893, A theory of cortical visual representation, Brain 16: 475–491.Google Scholar
  43. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex 1: 1–47.PubMedGoogle Scholar
  44. Fendrich, R., Wessinger, C. M., and Gazziniga, M. S., 1992, Residual vision in a scotoma: Implications for blindsight, Science 258: 1489–1491.PubMedGoogle Scholar
  45. Ferrier, D., 1876, The Functions of the Human Brain, Smith, Elder, London, p. 164.Google Scholar
  46. Flechsig, P., 1901, Developmental (myelogenetic) localisation of the cerebral cortex in the human subject, Lancet 2: 1027–1029.Google Scholar
  47. Fox, P. T., Mintun, M. A., Raichle, M. E., Miezin, F. M., Allman, J. M., and Van Essen, D. C., 1986, Mapping human visual cortex with positron emission tomography, Nature 323: 806–809.PubMedGoogle Scholar
  48. Frisen, L., 1980, The neurology of visual acuity, Brain 103: 639–670.PubMedGoogle Scholar
  49. Galaburda, A. M., Rosen, G. D., Drislane, F. W., and Livingstone, M. S., 1991, Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia, Soc. Neurosci. Abstr. 17: 20.Google Scholar
  50. Grady, C. L., Haxby, J. V., Horwitz, B., Schapiro, M. B., Rapoport, S. I., Ungerleider, L. G., Mishkin, M., Carson, R. E., and Herscovitch, P., 1992, Dissociation of object and spatial vision in human extrastriate cortex: Age-related changes in activation of regional cerebral blood flow measured with [15O] water and positron emission tomography, J. Cogn. Neurosci. 4: 23–34.Google Scholar
  51. Green, D. M., and Swets, J. A., 1966, Signal Detection Theory and Psychophysics, Krieger, New York.Google Scholar
  52. Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E. Herscovitch, P., Schapiro, M. B., and Rapoport, S. I., 1991, Dissociation of object and spatial visual processing pathways in human extrastriate cortex, Proc. Natl. Acad. Sci. USA 88: 1621–1625.PubMedGoogle Scholar
  53. Hacaen, H., and Ajuriaguerra, J., 1954, Bálint’s syndrome (psychic paralysis of visual fixation) and its minor forms, Brain 77: 373–400.Google Scholar
  54. Hendrickson, A. E., Movshon, J. A., Eggers, H. M., Gizzi, M. S., Boothe, R. G., and Kiorpes, L., 1987, Effects of early unilateral blur on the macaque’s visual system. II. Anatomical observations, J. Neurosci. 7: 1327–1339.PubMedGoogle Scholar
  55. Henschen, S. E., 1893, On the visual path and center, Brain 16: 170–180.Google Scholar
  56. Hess, R. F., and Pointer, J. S., 1989, Spatial and temporal processing sensitivity in hemianopia: A comparative study of the sighted and blind hemifields, Brain 112: 871–894.PubMedGoogle Scholar
  57. Heywood, C. A., Wilson, B., and Cowey, A., 1987, A case of cortical colour “blindness” with relatively intact achromatic discrimination, J. Neurol. Neurosurg. Psychiatry 50: 22–29.PubMedGoogle Scholar
  58. Hitchcock, P. F., and Hickey, T. L., 1980, Ocular dominance columns: Evidence for their presence in humans, Brain Res. 182: 176–179.PubMedGoogle Scholar
  59. Hockfield, S., Tootell, R. B., and Zaremba, S., 1990, Molecular differences among neurons reveal an organization of human visual cortex, Proc. Natl. Acad. Sci. USA 87: 3027–3031.PubMedGoogle Scholar
  60. Holmes, G., 1918a, Disturbances of visual orientation, Br. J. Ophthalmol. 2: 449–468, 506-516.PubMedGoogle Scholar
  61. Holmes, G., 1918b, Disturbances of vision caused by cerebral lesions, Br. J. Ophthalmol. 2: 353–384.PubMedGoogle Scholar
  62. Holmes, G., 1945, The organization of the visual cortex in man, Proc. R. Soc. London Ser. B 132: 348–361.Google Scholar
  63. Holmes, G., and Horrax, G., 1919, Disturbances of spatial orientation and visual attention, with loss of stereoscopic vision, Arch. Neurol. Psychiatry 1: 385–407.Google Scholar
  64. Holmes, G., and Lister, W. T., 1916, Disturbances of vision from cerebral lesions with special reference to the cortical representation of the macula, Brain 39: 34–73.Google Scholar
  65. Horton, J. C., and Hedley-White, E. T., 1984, Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 255–272.Google Scholar
  66. Horton, J. C., and Hoyt, W. F., 1991a, Quadratic visual field defects. A hallmark of lesions in extrastriate (V2/V3) cortex, Brain 114: 1703–1718.PubMedGoogle Scholar
  67. Horton, J. C., and Hoyt, W. F., 1991b, The representation of the visual field in human striate cortex, Arch. Ophthalmol. 109: 816–824.PubMedGoogle Scholar
  68. Horton, J. C., Dagi, L. R., McCrane, E. P., and de Monasterio, F. M., 1990, Arrangement of ocular dominance columns in human visual cortex, Arch. Ophthalmol. 108: 1025–1031.PubMedGoogle Scholar
  69. Inouye, T., 1909, Die Sehstorungen bei Schussverletzungen der kortikalen Sesphare, Engelmann, Leipzig.Google Scholar
  70. Jeannerod, M., 1988, The Neural and Behavioral Organization of Goal-Directed Movements, Oxford University Press, London.Google Scholar
  71. Kiorpes, L., Boothe, R. G., Hendrickson, A. E., Movshon, J. A., Eggers, H. M., and Gizzi, M. S., 1987, Effects of early unilateral blur on the macaque’s visual system. I. Behavioral observations, J. Neurosci. 7: 1318–1326.PubMedGoogle Scholar
  72. Kolb, B., 1990, Recovery from occipital stroke: A self-report and an inquiry into visual processes, Can. J. Psychol. 44: 130–147.PubMedGoogle Scholar
  73. Krauskopf, J., Williams, D., and Heely, D., 1982, Cardinal directions of color space, Vision Res. 22: 1123–1131.PubMedGoogle Scholar
  74. Kulikowski, J. J., and Tolhurst, D. J., 1973, Psychophysical evidence for sustained and transient detectors in human vision, J. Physiol. (London) 232: 149–162.Google Scholar
  75. Lashley, K. S., 1948, The mechanism of vision. XVIII. Effects of destroying the visual “associative areas” of the monkey, Genet. Psychol. Monog. 27: 107–166.Google Scholar
  76. Lepore, F. E., 1983, Neuro-ophthalmology according to Gordon Holmes, in: Neuro-Ophthalmology, Volume 1 (C. H. Smith and R. W. Beck, eds.), Neurologic Clinics, pp. 789-805.Google Scholar
  77. Leventhal, A. G., Ault, S.J., and Vitek, D.J., 1988, The nasotemporal division in primate retina: The neural bases of macular sparing and splitting, Science 240: 66–67.PubMedGoogle Scholar
  78. Lissauer, H., 1890, Ein fall von Seelenblindheit nebst einem Bitrag zur Theorie derselben, Arch. Psychiatr. Nervenkr. 2: 22–70.Google Scholar
  79. Livingstone, M. S., and Hubel, D. H., 1987, Psychophysical evidence for separate channels for the perception of form, color, movement and depth, J. Neurosa. 7: 3416–3468.Google Scholar
  80. Livingstone, M. S., Rosen, G. D., Drislane, F. W., and Galaburda, A. M., 1991, Physiological and anatomical evidence for magnocellular defect in developmental dyslexia, Proc. Natl. Acad. Sci. USA 88: 7943–7947.PubMedGoogle Scholar
  81. Logothetis, N. K., and Schall, J. D., 1989, Neuronal correlates of subjective visual perception, Science 245: 761–763.PubMedGoogle Scholar
  82. Luria, A. R., 1959, Disorders of “simultaneous perception” in a case of bilateral occipito-parietal brain injury, Brain 82: 437–449.PubMedGoogle Scholar
  83. Marinkovic, S. V., Milisavljevic, M. M., Lolic-Draganic, V., and Kovacevic, M. S., 1987, Distribution of the occipital branches of the posterior cerebral artery: Correlation with occipital lobe infarcts, Stroke 18: 728–732.PubMedGoogle Scholar
  84. Marshall, J. C., and Halligan, P. W., 1988, Blindsight and insight in visuospatial neglect, Nature 336: 766–767.PubMedGoogle Scholar
  85. Martin, F., and Lovegrove, W., 1987, Flicker contrast sensitivity in normal and specifically disabled readers, Perception 16: 215–221.PubMedGoogle Scholar
  86. Martin, K. A. C., 1992, Parallel pathways converge, Curr. Biol. 2: 555–557.PubMedGoogle Scholar
  87. Meadows, J. C., 1974, Disturbed perception of colors associated with localized cerebral lesions, Brain 97: 615–632.PubMedGoogle Scholar
  88. Meeres, S. L., and Graves, R. E., 1990, Localization of unseen visual stimuli by humans with normal vision, Neuropsyhologia 28: 1231–1237.Google Scholar
  89. Merigan, W. H., and Maunsell, J. H. R., 1993, How parallel are the primate visual pathways? Ann. Rev. Neurosci. 16: 369–402.PubMedGoogle Scholar
  90. Mondrian, P., 1947, Plastic Art and Pure Plastic Art. Documents of Modern Art, Wittenborn, New York.Google Scholar
  91. Moran, J., and Desimone, R., 1985, Selective attention gates visual processing in the extra-striate cortex, Science 229: 782–784.PubMedGoogle Scholar
  92. Motter, B., 1992, Selective activation of V4 neurons in a color and orientation discrimination task, Invest. Ophthalmol. Visual Sci. 33: 1130.Google Scholar
  93. Movshon, J. A., Eggers, H. M., Gizzi, M. S., Hendrickson, A. E., Kiorpes, L., and Boothe, R. G., 1987, Effects of early unilateral blur on the macaque’s visual system. III. Physiological observations, J. Neurosci. 7: 1340–1351.PubMedGoogle Scholar
  94. Munk, H., 1881, Ueber die Funktionen der Grosshirnrinde: gessammelte Mitteilungen aus den Jarhen 1877–1880, Hirschwald, Berlin.Google Scholar
  95. Nakayama, K., 1985, Biological image motion processing: A review, Vision Res. 25: 625–660.PubMedGoogle Scholar
  96. Nawrot, M., and Blake, R., 1989, Neural integration of information specifying structure from stereopsis and motion, Science 244: 716–718.PubMedGoogle Scholar
  97. Nawrot, M., and Blake, R., 1991, The interplay between stereopsis and structure from motion, Percept. Psychophys. 49: 230–244.PubMedGoogle Scholar
  98. Nealy, T., Maunsell, J. H. R., and Merigan, W. H., 1992, Visual dysfunction after a lesion of area V2 in the macaque. Invest. Ophthalmol. Visual Sci. 33: 1130a.Google Scholar
  99. Newsome, W. T, and Paré, E. B., 1988, A selective impairment of motion perception following lesions of the middle temporal area (MT), J. Neurosci. 8: 2201–2211.PubMedGoogle Scholar
  100. Newsome, W. T., Wurtz, R. H., Dursteler, M. R., and Mikami, A., 1985, Deficits in visual motion processing following ibotenic acid lesions of the middle temporal area of the macaque monkey, J. Neurosci. 5: 825–840.PubMedGoogle Scholar
  101. Palca, J., 1990, Insights from broken brains, Science 248: 812–814.PubMedGoogle Scholar
  102. Perenin, M. T., and Jeannerod, M., 1978, Visual function within the hemianopic field following early cerebral hemidecortication in man. I. Spatial localization, Neuropsychologia 10: 1–13.Google Scholar
  103. Pessin, M. S., Lathi, E. S., Cohen, M. B., Kwan, E. S., and Hedges, T. R., 1987, Clinical features and mechanisms of occipital infarction, Ann. Neurol. 21: 290–299.PubMedGoogle Scholar
  104. Plant, G. T., 1991, Disorders of colour vision in diseases of the nervous system, in: Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies (Cronly-Dillon, ed.), CRC Press, Boca Raton, Fla., pp. 173–198.Google Scholar
  105. Polyak, S., 1957, The Vertebrate Visual System, University of Chicago, Chicago.Google Scholar
  106. Poppel, E., Held, R., and Frost, D., 1973, Residual vision function after brain wounds involving the central visual pathways, Nature 243: 295–296.PubMedGoogle Scholar
  107. Posner, M. I., 1980, Orienting of attention, Q. J. Exp. Psychol. 32: 3–25.PubMedGoogle Scholar
  108. Posner, M. I., Walker, J. A., Friedrich, F. J., and Rafal, R. D., 1984, Effects of parietal lobe injury on covert orienting of visual attention, J. Neurosci. 4: 1863–1874.PubMedGoogle Scholar
  109. Ptito, A., Lepore, F., Ptito, M., and Lassonde, M., 1991, Target detection and movement discrimination in the blind field of hemispherectomized patients, Brain 114: 497–512.PubMedGoogle Scholar
  110. Rademacher, J., Galaburda, A. M., Kennedy, D. N., Filipek, P. A., and Caviness, V., 1992, Human cerebral cortex: Localization, parcellation, and morphometry with magnetic resonance imaging, J. Cogn. Neurosci. 4: 352–374.Google Scholar
  111. Riddoch, G., 1917, Dissociation of visual perception due to occipital injuries with especial reference to appreciation of movement, Brain 40: 15–57.Google Scholar
  112. Rizzo, M., 1993, “Balint’s syndrome” and associated visuo-spatial disorders, in: Visual Perceptual Defects: Baillieres International Practice and Research (C. Kennard, ed.), W. B. Saunders, London, pp. 415–437.Google Scholar
  113. Rizzo, M., and Hurtig, R., 1987, Looking but not seeing: Attention, perception, and eye movements in simultanagnosia. Neurology 37: 1642–1648.PubMedGoogle Scholar
  114. Rizzo, M., and Hurtig, R., 1989, The effect of bilateral visual cortex lesions on the development of eye movements and perception, Neurology 39: 406–413.PubMedGoogle Scholar
  115. Rizzo, M., and Hurtig, R., 1992, Visual search in hemineglect: What stirs idle eyes? Clin. Vision Sci. 7: 39–52.Google Scholar
  116. Rizzo, M., and Robin, D. A., 1990, Simultanagnosia: A defect of sustained attention yields insights on visual information processing, Neurology 40: 447–455.PubMedGoogle Scholar
  117. Rizzo, M., and Robin, D., 1992, Visual dysfunction in the “good” fields in humans with unilateral occipital lesions, Invest. Ophthalmol. Visual Sci. 33: 1130.Google Scholar
  118. Rizzo, M., Hurtig, R., and Damasio, A. R., 1987, The role of scanpaths in facial recognition and learning, Ann. Neurol. 22: 41–45.PubMedGoogle Scholar
  119. Rizzo, M., Nawrot, M., Blake, R., and Damasio, A. R., 1992, A human disorder resembling area V4 dysfunction in the monkey, Neurology 42: 1175–1180.PubMedGoogle Scholar
  120. Rizzo, M., Smith, V, Pokorny, J., and Damasio, A. R., 1993a, Color perception profiles in central achromatopsia, Neurology 43: 995–1001.PubMedGoogle Scholar
  121. Rizzo, M., Nawrot, M., and Zihl, J., 1993b, Perception of structure-from-motion and non-motion cues in “central akinetopsia,” Association for Research in Vision and Ophthalmology (abstract).Google Scholar
  122. Rock, I., 1983, The Logic of Perception, MIT Press, Cambridge, Mass.Google Scholar
  123. Rockland, K. S., and Pandya, D. N., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.PubMedGoogle Scholar
  124. Rodieck, R. W., 1988, The primate retina, in: Comparative Primate Biology, Volume 4 (J. Horst, D. Steklis, and J. Erwin, eds.), Liss, New York, pp. 203–278.Google Scholar
  125. Rodieck, R. W, Binmoeller, R. F., and Dineen, J., 1985, Parasol and midget cells of the human retina, J. Comp. Neurol. 233: 115–132.PubMedGoogle Scholar
  126. Sadun, A. A., Borcher, M., De Vita, E., Hinton, D. R., and Bassi, C. J., 1987, Assessment of visual impairment in patients with Alzheimer’s disease, Am. J. Ophthalmol. 104: 113–120.PubMedGoogle Scholar
  127. Schafer, E. A., 1888, On the functions of the temporal and occipital lobes: A reply to Dr. Ferrier, Brain 11: 145–165.Google Scholar
  128. Schiller, P. H., and Lee, K., 1991, The role of the primate extrastriate area V4 in vision, Science 251: 1251–1253.PubMedGoogle Scholar
  129. Schiller, P. H., and Logothetis, N. K., 1990, The color-opponent and broad-based channels of the primate visual system, Trends Neurosci. 11: 392–398.Google Scholar
  130. Smith, G., and Richardson, W, 1966, The course and distribution of the arteries supplying visual (striate) cortex, Am. J. Ophthalmol. 61: 1391–1396.PubMedGoogle Scholar
  131. Spitzer, J., Desimone, R., and Moran, J., 1988, Increased attention enhances both behavioral and neuronal performance, Science 240: 338–340.PubMedGoogle Scholar
  132. Steinmetz, H., Furst, G., and Freund, H. J., 1989, Cerebral cortical localization: Application and validation of the proportional grid system in MR in aging, J. Comput. Assist. Tomogr. 13: 10–19.PubMedGoogle Scholar
  133. Stoerig, P., and Cowey, A., 1989, Wavelength sensitivity in blindsight, Nature 342: 916–918.PubMedGoogle Scholar
  134. Stoerig, P., and Cowey, A., 1991, Increment-threshold spectral sensitivity in blindsight: Evidence for colour opponency, Brain 114: 1487–1512.PubMedGoogle Scholar
  135. Stoerig, P., and Cowey, A., 1992, Wavelength discrimination in blindsight, Brain 115: 425–444.PubMedGoogle Scholar
  136. Talairach, J., and Tournoux, P., 1988, Co-planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging, Thieme, Stuttgart.Google Scholar
  137. Teller, D. Y., 1984, Linking propositions, Vision Res. 10: 1233–1246.Google Scholar
  138. Ternus, J., 1926, Experimentelle Untersuchungen über phänomenale Identität, Psychol. Forsch. 7: 71–126. Translated and condensed in Ellis, W., (ed.), Source Book of Gestalt Psychology, Humanities Press, New York.Google Scholar
  139. Teuber, H. L., 1968, Alteration of perception and memory in man, in: Analysis of Behavioral Change (L. Weiskrantz, eds.), Harper & Row, New York.Google Scholar
  140. Teuber, H. L., Battersby, W. S., and Bender, M. B., 1960, Visual Field Defects After Penetrating Missile Wounds of the Brain, Harvard University Press, Cambridge, Mass.Google Scholar
  141. Thurston, S. E., Leigh, R. J., Crawford, T, Thompson, A., and Kennard, C., 1988, Two distinct defects of visual tracking caused by unilateral lesions of cerebral cortex in humans, Ann. Neurol. 23: 266–273.PubMedGoogle Scholar
  142. Tolhurst, D. J., and Ling, L., 1988, Magnification factors and the organization of the human striate cortex, Hum. Neurobiol. 6 (4): 247–254.PubMedGoogle Scholar
  143. Tranel, D., and Damasio, A. R., 1985, Knowledge without awareness: An autonomic index of facial recognition by prosopagnosics, Science 228: 1453–1454.PubMedGoogle Scholar
  144. Treisman, A. M., 1988, Features and objects: The fourteenth Bartlett memorial lecture, Q.J. Exp. Psychol. 40: 201–237.Google Scholar
  145. Treisman, A. M., and Gelade, C., 1980, A feature integration theory of attention, Cogn. Psychol. 12: 97–136.PubMedGoogle Scholar
  146. Trick, G. L., 1985, Retinal potentials in patients with primary open-angle glaucoma: Physiological evidence for temporal frequency tuning defects, Invest. Ophthalmol. Visual Sci. 26: 1750–1759.Google Scholar
  147. Trick, G., Barris, M. C., and Bickerl-Bluth, M., 1989, Abnormal pattern electroretinograms in patients with senile dementia of the Alzheimer’s type, Ann. Neurol. 26: 226–231.PubMedGoogle Scholar
  148. Tyler, C. W., 1981, Specific deficits in glaucoma and ocular hypertension, Invest. Ophthalmol. Visual Sci. 20: 204–212.Google Scholar
  149. Ungerleider, L. G., and Desimone, R., 1986, Cortical connections of visual area MT in the macaque, J. Comp. Neurol. 248: 190–222.PubMedGoogle Scholar
  150. Vaina, L. M., 1989, Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans, Biol. Cybern, 61: 347–359.PubMedGoogle Scholar
  151. Vaina, L. M., Lemay, M., Bienfang, D. C., Choi, A. Y, and Nakayama, K., 1990, Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms. A case study, Visual Neurosci. 5: 353–369.Google Scholar
  152. Van Essen, D. C., Newsome, W. T., and Bixby, J. L., 1982, The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey, J. Neurosci. 2: 265–283.PubMedGoogle Scholar
  153. Veraart, C., DeVolder, A. G., Wanet-Defalque, M. C., Bol, A., Michel, C., and Goffinet, A. M., 1990, Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset, Brain Res. 510: 115–121.PubMedGoogle Scholar
  154. Verrey, D., 1888, Hemiachromatopsie droite absolue, Arch. Ophthalmol. (Paris) 8: 289–300.Google Scholar
  155. Victor, J., Maiese, K., Shapley, R., Sidtis, J., and Gazziniga, M., 1989, Acquired central dyschromatopsia with presentation of color discrimination, Clin. Visual Sci. 3: 183–196.Google Scholar
  156. von Graefe, A., 1856, Ueber die Untersuchung des Gesichtsfeldes bei amblyopischen Affectionen, Arch. Ophthelmol. 2 (2): 258–298.Google Scholar
  157. Von Monakow, C., 1900, Pathologische und anatomische Mittheilungen uber die optischen Centren des Menschen, Neurol. Centralbl. 19: 680–681.Google Scholar
  158. Walsh, F. B., and Hoyt, W. F., 1969, Clinical Neuro-Ophtlialmology, 3rd ed., Williams & Wilkins, Baltimore.Google Scholar
  159. Weiskrantz, L., 1987, Blindsight: A Case Study and Implications, Oxford University Press, London.Google Scholar
  160. Weiskrantz, L., 1990, The Ferrier Lecture, 1989. Outlooks for blindsight: Explicit methodologies for implicit processes, Proc. R. Soc. London Ser. B 239: 247–278.Google Scholar
  161. Weiskrantz, L., Warrington, E. K., Sanders, M. D., and Marshall, J., 1974, Visual capacity in the hemianopic field following a restricted occipital ablation, Brain 97: 709–728.PubMedGoogle Scholar
  162. Zee, D. S., Tusa, R. J., Herdman, S. J., Butler, P. H., and Gucer, G., 1987, Effects of occipital lobectomy upon eye movements in primate, J. Neurophysiol. 58: 883–907.PubMedGoogle Scholar
  163. Zeki, S., 1990, A century of cerebral achromatopsia, Brain 113: 1727–1777.Google Scholar
  164. Zeki, S., 1991, Cerebral akinetopsia (visual motion blindness): A review, Brain 114: 811–824.PubMedGoogle Scholar
  165. Zeki, S., Watson, J. D., Lueck, C. J., Friston, K.J., Kennard, C., and Frackowiak, R. S., 1991, A direct demonstration of functional specialization in human visual cortex, J. Neurosci. 11: 641–649.Google Scholar
  166. Zihl, J., 1981, Recovery of visual functions in patients with cerebral blindness: Effects of specific practice with saccadic localization, Exp. Brain Res. 44: 159–169.PubMedGoogle Scholar
  167. Zihl, J., von Cramon, D., and Mai, N., 1983, Selective disturbance of movement vision after bilateral brain damage, Brain 106: 313–340.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Matthew Rizzo
    • 1
  1. 1.Division of Behavioral Neurology and Cognitive Neuroscience, Department of NeurologyThe University of Iowa College of MedicineIowa CityUSA

Personalised recommendations