Advertisement

The Human Primary Visual Cortex

  • Rodrigo O. Kuljis
Part of the Cerebral Cortex book series (CECO, volume 10)

Abstract

The human primary visual (striate) cortex was one of the first specialized regions identified in the cerebral cortex (Gennari, 1782). Because of its unique anatomical organization and the striking clinical deficits that result from lesions to it (Rizzo, this volume), this region has received nearly continuous attention for over two centuries, making it the best understood of all cortical areas in the human brain.

Keywords

Visual Cortex Pyramidal Neuron Senile Plaque Primary Visual Cortex Macaque Monkey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allman, J., and Zucker, S., 1990, Cytochrome oxidase and functional coding in primate striate cortex: A hypothesis, Cold Spring Harbor Symp. Quant. Biol. 55: 979–982.PubMedCrossRefGoogle Scholar
  2. Angevine, J. B., and Sidman, R. L., 1961, Autoradographic study of cell migration during histogenesis of cerebral cortex in the mouse, Nature 192: 766–768.PubMedCrossRefGoogle Scholar
  3. Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., and Van Hoesen, G. W., 1991, The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease, Cere. Cortex 1: 103–116.CrossRefGoogle Scholar
  4. Bach-y-Rita, P., 1972, Brain Mechanisms in Sensory Substitution, Academic Press, New York.Google Scholar
  5. Baillarger, J. G. F., 1840, Recherches sur la structure de la couche corticale des circonvolutions du cerveau, Mem. Acad. Med. 8: 149–183.Google Scholar
  6. Bartelmez, G. W., and Dekaban, A. S., 1962, The early development of the human brain, Contrib. Embryol. (Publ. 253) 37: 13–32.Google Scholar
  7. Beach, T. G., and McGeer, E. G., 1988, Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer’s disease visual cortex, Brain Res. 463: 357–361.PubMedCrossRefGoogle Scholar
  8. Beach, T. G., Walker, R., and McGeer, E. G., 1989, Lamina-selective A68 immunoreactivity in primary visual cortex of Alzheimer’s disease patients, Brain Res. 501: 171–174.PubMedCrossRefGoogle Scholar
  9. Bell, M. A., and Ball, M. J., 1990, Neuritic plaques and vessels of visual cortex in aging and Alzheimer’s dementia, Neurobiol. Aging 11: 359–370.PubMedCrossRefGoogle Scholar
  10. Belliveau, J. W., Kennedy, D. N., McKinstry, R. C., Buchbinder, B. R., Weiskoff, R. M., Cohen, M. S., Vevea, J. M., Brady, T. J., and Rosen, B. R., 1991, Functional mapping of the human visual cortex by magnetic resonance imaging, Science 254: 716–719.PubMedCrossRefGoogle Scholar
  11. Berlin, R., 1858, Beitrag zur Structurlehre der Broßhirnwindungen, Inauguraldissertation, Junge, Erlangen.Google Scholar
  12. Berman, N. E. J., and Fredrickson, E., 1992, Morphology and laminar distribution of neuropeptide Y immunoreactive neurons in the human striate cortex, Synapse 11: 20–27.PubMedCrossRefGoogle Scholar
  13. Berry, M., and Rogers, A. W., 1965, The migration of neuroblasts in the developing cerebral cortex, J. Anat. 99: 691–709.PubMedGoogle Scholar
  14. Blanks, J. C., Hinton, D. R., Sadun, A. A., and Miller, C. A., 1989, Retinal ganglion cell degeneration in Alzheimer’s disease, Brain Res. 501: 364–372.PubMedCrossRefGoogle Scholar
  15. Blessed, G., Tomlinson, B. E., and Roth, M., 1968, The association between quantitative measures of dementia and of senile change in the grey matter of elderly subjects, Br. J. Psychiatry 114: 797–811.PubMedCrossRefGoogle Scholar
  16. Blümcke, I., Hof, P. R., Morrison, J. H., and Celio, M. R., 1990, Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans, J. Comp. Neurol. 301: 417–432.PubMedCrossRefGoogle Scholar
  17. Bolton, J. S., 1900, The exact histological localisation of the visual area of the human cerebral cortex, Philos. Trans. R. Soc. London Ser. B 193: 165–222.CrossRefGoogle Scholar
  18. Braak, E., 1982, On the Structure of the Human Striate Area, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  19. Braak, H., 1976, On the striate area of the human isocortex. A Golgi and pigmentarchitectonic study, J. Comp. Neurol. 166: 341–364.PubMedCrossRefGoogle Scholar
  20. Braak, H., Braak, E., and Kallus, P., 1989, Alzheimer’s disease: Areal and laminar pathology in the occipital isocortex, Acta Neuropathol. 77: 494–506.PubMedCrossRefGoogle Scholar
  21. Braddick, O., and Atkinson, J., 1988, Sensory selectivity, attentional control, and cross-channel integration in early visual development, Minn. Symp. Child Psychol. 20: 105–143.Google Scholar
  22. Brindley, G. S., 1972, The variability of the human striate cortex, J. Physiol. (London) 225: 1–3P.Google Scholar
  23. Brindley, G. S., and Lewin, W. S., 1968, The sensations produced by electrical stimulation of the visual cortex, J. Physiol. (London) 196: 479–493.Google Scholar
  24. Brodmann, K., 1903, Beiträge zur histologischen lokalisation der Großhirnrinde. Der Calcarinatypus, J. Psychol. Neurol. 2: 133–159.Google Scholar
  25. Brodmann, K., 1906, Beiträge zur Histologischen Lokalisation der Großhirnrinde. V. Über den allgemeinen Bauplan des Cortex palii bei den Mammaliern und zwei homologe Rindenfelder im besonderen. Zugleich ein Betrag zur Furchenlehre, J. Psychol. Neurol. 6: 275–400.Google Scholar
  26. Brodmann, K., 1909, Vergleichende Lokalisationslehre der Großhirnrinde, Barth, Leipzig.Google Scholar
  27. Brodmann, K., 1918, Individuelle Variationen der sehsphare und ihre bedeutung für die klinik der hinterauptschusse, Allg. Z. Psychiatr. (Berlin) 74:564–568.Google Scholar
  28. Bronson, G., 1974, The postnatal growth of visual capacity, Child Dev. 45: 873–890.PubMedCrossRefGoogle Scholar
  29. Brun, A., and Englund, E., 1981, Regional pattern of degeneration in Alzheimer’s disease: Neuronal loss and histopathological grading, Histopathology 5: 549–564.PubMedCrossRefGoogle Scholar
  30. Brun, A., and Gustafson, L., 1976, Distribution of cerebral degeneration in Alzheimer’s disease, Arch. Psychiatr. Nervenkr. 223: 15–33.PubMedCrossRefGoogle Scholar
  31. Brunquell, P. J., Papale, J. H., Horton, J. C., Williams, R. S., Zgrabik, M. J., Albert, D. M., and Hedley-Whyte, E. T., 1984, Sex-linked hereditary bilateral anophthalmos. Pathologic and radiologic correlation, Arch. Ophthalmol. 102: 108–113.PubMedCrossRefGoogle Scholar
  32. Burkhalter, A. 1991, Developmental status of intrinsic connections in visual cortex of newborn humans, in: The Changing Visual System (P. Bagnoli and W. Hodos, eds.), Plenum Press, New York, pp. 247–254.CrossRefGoogle Scholar
  33. Burkhalter, A., and Bernardo, K. L., 1989, Organization of corticocortical connections in human visual cortex, Proc. Natl. Acad. Sci. USA 86: 1071–1075.PubMedCrossRefGoogle Scholar
  34. Button, J., and Putnam, T., 1962, Visual responses to cortical stimulation in the blind, J. Iowa Med. Soc. 52: 17–21.Google Scholar
  35. Campbell, S. K., Switzer, R. C., and Martin, T. L., 1987, Alzheimer’s plaques and tangles: A controlled enhanced silver staining method, Soc. Neurosci. Abstr. 13: 678.Google Scholar
  36. Chan-Palay, V., Palay, S. L., and Billings-Gagliardi, S. M., 1974, Meynert cells in the primate visual cortex, J. Neurocytol. 3: 631–658.PubMedCrossRefGoogle Scholar
  37. Chugani, H. T., Phelps, M. E., and Mazziotta, J. C., 1987, Positron emission tomography study of human brain functional development, Ann. Neurol. 22: 487–497.PubMedCrossRefGoogle Scholar
  38. Clark, V. P., Courchesne, E., and Grafe, M., 1992, In vivo myeloarchitectonic analysis of human striate cortex using magnetic resonance imaging, Cereb. Cortex 2: 417–424.PubMedCrossRefGoogle Scholar
  39. Clark, W. E. L. G., 1942, The cells of Meynert in the visual cortex of the monkey, J. Anat. 76: 369–376.Google Scholar
  40. Clarke, S., and Miklossy, J., 1990, Occipital cortex in man: Organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas, J. Comp. Neurol. 298: 188–214.PubMedCrossRefGoogle Scholar
  41. Cosmetattos, G. F., 1931, De la structure du centre visuel cérébral chez les anophthalmes congenitaux, Arch. Ophthalmol. 48: 282–289.Google Scholar
  42. Cronin-Golomb, A., Corkin, S., Rizzo, J. F., Cohen, J., Growdon, J. H., and Banks, K. S., 1991, Visual dysfunction in Alzheimer’s disease: Relation to normal aging, Ann. Neurol. 29: 41–52.PubMedCrossRefGoogle Scholar
  43. Damasio, H., Kuljis, R. O., Yuh, W, Van Hoesen, G. W., and Ehrhardt, J., 1991, Magnetic resonance imaging of human intracortical structure in vivo, Cereb. Cortex 1: 374–379.PubMedCrossRefGoogle Scholar
  44. De Carlos, J. A., López-Mascaraque, L., and Valverde, F., 1990, Morphological characterization of Alz-50 immunoreactive cells in the developing neocortex of kittens, in: The Neocortex: Oxtogeny and Phylogeny (B. L. Finlay, G. Innocenti, and H. Scheich, eds.), Plenum Press, New York, pp. 193–197.Google Scholar
  45. Dehay, C., Horsburgh, G., Berland, M., Killackey, H., and Kennedy, H., 1989, Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input, Nature 337: 265–267.PubMedCrossRefGoogle Scholar
  46. Dobelle, W. H., Mladejovsky, M. G., and Girvin, J. P., 1974, Artificial vision for the blind. Electrical stimulation of visual cortex offers hope for a functional prosthesis, Science 183: 440–444.PubMedCrossRefGoogle Scholar
  47. Duckworth, T., and Cooper, E. R. A., 1964, A study of anophthalmia in an adult, Acta Anat. 63: 509–522.CrossRefGoogle Scholar
  48. Economo, C. F. von, and Koskinas, G. N., 1925, Die Cytoarchitektonik der Hirnirinde des erwachsenen Menschen, Springer-Verlag, Berlin.Google Scholar
  49. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cere. Cortex 1: 1–47.CrossRefGoogle Scholar
  50. Fernández, V, and Bravo, H., 1974, Autoradiographic study of development of the cerebral cortex in the rabbit, Brain Behav. Evol. 9: 317–332.PubMedCrossRefGoogle Scholar
  51. Filimonoff, I. N., 1929, Zur embryonalen und postembryonalen Enwicklung der Großhirnirinde des Menschen, J. Psychol Neurol. 39: 323–389.Google Scholar
  52. Filimonoff, I. N., 1932, Uber die Variabilität der grosshirnrindenstruktur. Regio occiptalis beim erwachsenen menschen, J. Psychol. Neurol. 44: 1–96.Google Scholar
  53. Finlay, B. L., and Slattery, M., 1983, Local differences in the amount of early cell death in neocortex predict local specialization, Science 219: 1349–1351.PubMedCrossRefGoogle Scholar
  54. Fishbein, D. S., Chrousos, G. A., Di Chiro, G., Wayner, R. E., Patronas, N.J., and Larson, S. M., 1987, Glucose utilization of visual cortex following extra-occipital interruptions of the visual pathways by tumor. A positron emission tomographic study, J. Clin. Neuro-ophthalmol. 7: 63–68.Google Scholar
  55. Florence, S. L., and Kaas, J. H., 1992, Ocular dominance columns in area 17 of Old World macaque and talapoin monkeys: Complete reconstruction and quantitative analyses, Visual Neurosci. 8: 449–462.CrossRefGoogle Scholar
  56. Fox, P. T., Mintun, M. A., Raichle, M. E., Miezin, F. M., Allman, J. M., and Van Essen, D. C., 1986, Mapping human visual cortex with positron emission tomography, Nature 323: 806–809.PubMedCrossRefGoogle Scholar
  57. Fox, P. T., Miezin, F. M., Allman, J. M., Van Essen, D. C., and Raichle, M. E., 1987, Retinotopic organization of human visual cortex mapped with positron-emission tomography, J. Neurosci. 7: 913–922.PubMedGoogle Scholar
  58. Garey, L. J., 1971, A light and electron microscopic study of the visual cortex of the cat and monkey, Proc. R. Soc. London Ser. B 179:21–40.CrossRefGoogle Scholar
  59. Gennari, F., 1782, De Peculiari Structura Cerebri Nonnulisque Ejus Morbus, Ex Regio, Parmae.Google Scholar
  60. Gilbert, C. D., Hirsch, J. A., and Wiesel, T. N., 1990, Lateral interactions in visual cortex, Cold Spring Harbor Symp. Quant. Biol. 55: 663–677.PubMedCrossRefGoogle Scholar
  61. Girvin, J. P., 1988, Current status of artificial vision by electrocortical stimulation, Can. J. Neurol. Sci. 15: 58–62.PubMedGoogle Scholar
  62. Glickstein, M., 1988, The discovery of the visual cortex, Sci. Am 259: 118–127.PubMedCrossRefGoogle Scholar
  63. Glickstein, M., and Rizzolatti, G., 1984, Francesco Gennari and the structure of the cerebral cortex, Trends Neurosci. 7: 464–467.CrossRefGoogle Scholar
  64. Glickstein, M., and Whitteridge, D., 1987, Tatsuji Inouye and the mapping of the visual fields in the human visual cortex, Trends Neurosci. 10: 350–353.CrossRefGoogle Scholar
  65. Haberland, C., and Perou, M., 1968, Primary bilateral anophthalmia, J. Neuropathol. Exp. Neurol. 28: 337–351.Google Scholar
  66. Haug, H., 1984, Macroscopic and microscopic morphometry of the human brain and cortex. A survey in the light of new results, in: Brain Pathology (G. Pilleri and F. Tagliavini, eds.), 1: 123–149.Google Scholar
  67. Heumann, D., Leuba, G., and Rabinowicz, T., 1978, Postnatal development of the mouse cerebral neocortex. IV. Evolution of the total cortical volume, of the population of neurons and glial cells, J. Hirnforsch. 19: 385–393.PubMedGoogle Scholar
  68. Hicks, S. P., and D’Amato, C. J., 1968, Cell migrations to the isocortex of the rat, Anat. Rec. 160: 619–634.PubMedCrossRefGoogle Scholar
  69. Hinton, D. R., Sadun, A. A., Blanks, J. C., and Miller, C., 1986, Optic nerve degeneration in Alzheimer’s disease, N. Engl. J. Med. 315: 485–487.PubMedCrossRefGoogle Scholar
  70. His, W, 1904, Die Entwickelung des Menschlichen Gehirns wärend der ersten Monate, Hirzel, Leipzig, pp. 176-180.Google Scholar
  71. Hitchcock, P. F., and Hickey, T. L., 1980, Ocular dominance columns: Evidence for their presence in humans, Brain Res. 182: 176–179.PubMedCrossRefGoogle Scholar
  72. Hockfield, S., Tootell, R. B., and Zaremba, S., 1990, Molecular differences among neurons reveal an organization of human visual cortex, Proc. Natl. Acad. Sci. USA 87: 3027–3031.PubMedCrossRefGoogle Scholar
  73. Holmes, G., and Lister, W. T., 1916, Disturbances of vision from cerebral lesions with special reference to the cortical representation of the macula, Brain 39: 34–73.CrossRefGoogle Scholar
  74. Horton, J. C., 1984, Cytochrome oxidase patches: A new cytoarchitectonic feature of monkey visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 199–253.CrossRefGoogle Scholar
  75. Horton, J. C., and Hedley-Whyte, E. T., 1984, Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 255–272.CrossRefGoogle Scholar
  76. Horton, J. C., Dagi, L. R., McCrane, E. P., and de Monasterio, F. M., 1990, Arrangement of ocular dominance columns in human visual cortex, Arch. Ophthalmol. 108: 1025–1031.PubMedCrossRefGoogle Scholar
  77. Hoyt, W. F., and Margolis, W. T., 1970, Arterial supply of the striate cortex: Angiographic changes with occlusion of the posterior cerebral artery, Excerpta Med. Int. Congr. 1323-1332.Google Scholar
  78. Hoyt, W. F., and Newton, T. M., 1970, Angiographie changes with occlusion of arteries that supply the visual cortex, N.Z. Med. J. 72: 310–317.Google Scholar
  79. Huttenlocher, P. R., and de Courten, C., 1987, The development of synapses in striate cortex of man, Hum. Neurobiol. 6: 1–9.PubMedGoogle Scholar
  80. Huxley, T. H., 1861, On the brain of Ateles paniscus, Proc. Zool. Soc. London p. 247.Google Scholar
  81. Katz, B., and Rimmer, S., 1989, Ophthalmologic manifestations of Alzheimer’s disease, Surv. Ophthalmol. 34: 31–43.PubMedCrossRefGoogle Scholar
  82. Katz, B., Rimmer, S., Iragui, V., and Katzman, R., 1989, Abnormal pattern electroretinogram in Alzheimer’s disease: Evidence for retinal ganglion cell degeneration? Ann. Neurol. 26: 221–225.PubMedCrossRefGoogle Scholar
  83. Khachaturian, Z. S., 1985, Diagnosis of Alzheimer’s disease, Arch. Neurol. 42: 1097–1105.PubMedCrossRefGoogle Scholar
  84. Klekamp, J., Riedel, A., Harper, C, and Kretschmann, H. J., 1991, Quantitative changes during the postnatal maturation of the human visual cortex, J. Neurol. Sci. 103: 136–143.PubMedCrossRefGoogle Scholar
  85. Kuljis, R. O., 1991, Development of the visual cortex deprived prenatally of retinal cues, in: The Changing Visual System (P. Bagnoli and W. Hodos, eds.), Plenum Press, New York, pp. 255–267.CrossRefGoogle Scholar
  86. Kuljis, R. O., 1992a, Differential distribution of Alzheimer’s disease lesions in the striate cortex and visual nuclei, Neurology 42(Suppl.):444 (1007P).CrossRefGoogle Scholar
  87. Kuljis, R. O., 1992b, Development of the human brain: The emergence of the neural substrate for pain and conscious experience, in: The Beginnings of Individual Human Life: Medical, Ethical and Legal Issues (F. Beller, R. F. Weir, and H. M. Sass, eds.), Kluwer, in press.Google Scholar
  88. Kuljis, R. O., 1993, Lesions in the pulvinar of patients with Alzheimers disease, in: Alzheimer’s Disease and Related Disorders. Advances in the Biosciences, Vol. 87 (M. Nicolini, P. F. Zatta, and B. Corain, eds.). Pergamon, London, pp. 191–192.Google Scholar
  89. Kuljis, R. O., and Rakic, P., 1989, Neuropeptide Y-containing neurons are situated outside cytochrome oxidase puffs in macaque visual cortex, Visual Neusosci. 2: 57–62.CrossRefGoogle Scholar
  90. Kuljis, R. O., and Rakic, P., 1990, Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors, Proc. Natl. Acad. Sci. USA 87: 5303–5306.PubMedCrossRefGoogle Scholar
  91. Kuljis, R. O., and Van Hoesen, G. W., 1991, Pancortical, regionally distinct bilaminar distribution of A68 immunoreactivity in Alzheimer’s disease, Neurology 41(Suppl.): 377 (909S).Google Scholar
  92. Kushner, M. J., Rosenquist, A., Alavi, A., Rosen, M., Dann, R., Fazekas, F., Bosley, T., Greenberg, J., and Reivich, M., 1988, Cerebral metabolism and patterned visual stimulation: A positron emission tomographic study of the human visual cortex, Neurology 38: 89–95.PubMedCrossRefGoogle Scholar
  93. Leuba, G., and Garey, L. J., 1987, Evolution of neuronal numerical density in the developing and aging human visual cortex, Hum. Neurobiol. 6: 11–18.PubMedGoogle Scholar
  94. Leuba, G., and Garey, L. J., 1989, Comparison of neuronal and glial numerical density in primary and secondary visual cortex in man, Exp. Brain Res. 77: 31–38.PubMedCrossRefGoogle Scholar
  95. LeVay, S., 1973, Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations, J. Comp. Neurol. 150: 53–86.PubMedCrossRefGoogle Scholar
  96. LeVay, S., Hubel, D. H., and Wiesel, T. N., 1975, The pattern of ocular dominance columns in macaque visual cortex revealed by a silver stain, J. Comp. Neurol. 159: 559–576.PubMedCrossRefGoogle Scholar
  97. LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191: 1–52.PubMedCrossRefGoogle Scholar
  98. Livingstone, M. S., and Hubel, D. H., 1984, Specificity of intrinsic connections in primate primary visual cortex, J. Neurosci. 4: 2830–2835.PubMedGoogle Scholar
  99. Lorente de Nó, R., 1938, The cerebral cortex: Architecture, intracortical connections and motor projections, in: Physiology of the Nervous System (J. F. Fulton, ed.), Oxford University Press, London, pp. 291–321.Google Scholar
  100. Lund, J. S., 1973, Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatto), J. Comp. Neurol. 147: 455–496.PubMedCrossRefGoogle Scholar
  101. Lund, J. S., and Boothe, R. G., 1975, Interlaminar connections and pyramidal organization in the visual cortex, area 17, of the macaque monkey, J. Comp. Neurol. 159: 305–334.CrossRefGoogle Scholar
  102. Lund, J. S., Lund, R. D., Hendrickson, A. H., Bunt, A. H., and Fuchs, A. F., 1975, The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase, J. Comp. Neurol. 164: 287–304.PubMedCrossRefGoogle Scholar
  103. McIntosh, H., and Parkinson, D., 1990, GAP-43 in adult visual cortex, Brain Res. 518: 324–328.PubMedCrossRefGoogle Scholar
  104. Marg, E., Adams, J. F., and Rutkin, B., 1968, Receptive fields of cells in the human visual cortex, Experientia 24: 348–350.PubMedCrossRefGoogle Scholar
  105. Marin-Padilla, M., 1983, Structural organization of the human cerebral cortex prior to the appearance of the cortical plate, Anat. Embryol. 168: 21–40.PubMedCrossRefGoogle Scholar
  106. Marin-Padilla, M., 1987, The chandelier cell of the human visual cortex: A Golgi study, J. Comp. Neurol. 256: 61–70.PubMedCrossRefGoogle Scholar
  107. Marin-Padilla, M., and Marin-Padilla, M. T, 1982, Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex, Anat. Embryol. 164: 161–206.PubMedCrossRefGoogle Scholar
  108. Masood, F., Wadhwa, S., and Bijlani, V., 1990, Early development of visual cortex in human fetuses, Arch. Ital. Anat. Embryol. 95: 1–10.Google Scholar
  109. Meynert, T., 1867, Der Bau der Großhirnrinde und seine örtlichen Verschiedenheiten, nebst einem pathologisch-anatomischen Corollarium, V. Jahresschr, Psychiatr. 1: 77–93.Google Scholar
  110. Meynert, T, 1868, Der Bau der Großhirnrinde und seineörtlichen Verschiedenheiten, nebst einem pathologisch-anatomischen Corallarium, V. Jahresschr. Psychiatr. 2: 88–113.Google Scholar
  111. Meynert, T, 1872, in Sticker’s Handbuch D. Gewebelehre, Volume II (quoted in Chan-Palay et al., 1974).Google Scholar
  112. Miller, N. R., 1982, Walsh and Hoyt’s Clinical Neuro-Opthalmology, 4th ed., Williams & Wilkins, Baltimore, pp. 146–147.Google Scholar
  113. Mirra, S. S., Heyman, A., McKeel, D., Sumi, S. M., Grain, B. J., Brownlee, L. M., Vogel, F. S., Hughes, J. P., van Belle, G., and Berg, L., 1991, The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II, Standardization of the neuropathologic assessment of Alzheimer’s disease, Neurology 41: 479–486.PubMedCrossRefGoogle Scholar
  114. Mora, B. N., Carman, G. J., and Allman, J. M., 1989, In vivo functional localization of the human visual cortex using positron emission tomography and magnetic resonance imaging, Trends Neurosci. 12: 282–284.PubMedCrossRefGoogle Scholar
  115. Neville, H., 1990, Intermodal competition and compensation in development. Evidence from studies of the visual system in congenitally deaf adults, Acad. Sci. Ann. N.Y. 208: 71–91.CrossRefGoogle Scholar
  116. Noebels, J. L., Roth, W. T., and Kopell, B. S., 1978, Cortical slow potentials and the occipital EEG in congenital blindness, J. Neurol. Sci. 37: 51–58.PubMedCrossRefGoogle Scholar
  117. O’Kusky, J., and Colonnier, M., 1982, Postnatal changes in number of neurons and synapses in visual cortex (area 17) of macaque monkey: A stereological analysis in normal and monocularly deprived animals, J. Comp. Neurol. 210: 291–306.PubMedCrossRefGoogle Scholar
  118. Phillipson, O. T, Kilpatric, I. C., and Jones, M. W., 1987, Dopaminergic innervation of the primary visual cortex in the rat, and some correlations with human visual cortex, Brain Res. Bull. 18: 621–633.PubMedCrossRefGoogle Scholar
  119. Polyak, S. L., 1958, The Vertebrate Visual System, The University of Chicago Press, Chicago.Google Scholar
  120. Prichard, J., Rothman, D., Novotny, E., Petroff, O., Kuwabara, T., Avison, M., Howseman, A., Hanstock, C., and Shulman, R., 1991, Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation, Proc. Natl. Acad. Sci. USA 88: 5829–5831.PubMedCrossRefGoogle Scholar
  121. Pritkin, R. I., 1980, The rarity of true congenital bilateral anophthalmos, Meta. Pediatr. Ophthalmol. 4: 165–167.Google Scholar
  122. Provis, J. M., van Driel, D., Billson, F. A., and Russell, P., 1985, Human fetal optic nerve: Overproduction and elimination of retinal axons during development, J. Comp. Neurol. 238: 92–100.PubMedCrossRefGoogle Scholar
  123. Putnam, T. J., 1926, Studies of the central visual connections: General relationship between external geniculate body, optic radiation and visual cortex in man, Arch. Neurol. Psychiatry (Chicago) 16: 566–596.CrossRefGoogle Scholar
  124. Rakic, P., 1974, Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition, Science 183: 425–427.PubMedCrossRefGoogle Scholar
  125. Rakic, P., 1988, Specification of cerebral cortical areas, Science 241: 170–176.PubMedCrossRefGoogle Scholar
  126. Rakic, P., and Riley, K. P., 1983, Overproduction and elimination of retinal axons in the fetal rhesus monkey, Science 219: 1441–1444.PubMedCrossRefGoogle Scholar
  127. Rakic, P., Bourgeois, J.-P., Eckenhoff, M. F., Zecevic, N., and Goldman-Rakic, P. S., 1986, Concurrent overproduction of synapses in diverse regions of primate cerebral cortex, Science 232: 232–235.PubMedCrossRefGoogle Scholar
  128. Rakic, P., Suñer, I., and Williams, R. W., 1991, A novel cytoarchitectonic area induced experimentally within the primate visual cortex, Proc. Natl. Acad. Sci. USA 88: 2083–2087.PubMedCrossRefGoogle Scholar
  129. Ramon y Cajal, S., 1890, Textura de las circunvoluciones cerebrales de los mamiferos inferiores. Nota preventiva, Gac. Méd. Catalana, Dec. 15.Google Scholar
  130. Ramón y Cajal, S., 1899, Estudios sobre la corteza cerebral humana. Corteza visual, Rev. Trim. Microgr. 4: 1–63.Google Scholar
  131. Ramón y Cajal, S., 1900, Studien über die Hirnrinde des Menschen. 1. Die Sehrinde, Barth, Leipzig.Google Scholar
  132. Ramón y Cajal, S., 1909–1911, Histologie du Système Nerveux de L’Homme et des Vertébrés. Maloine, Paris. (Reprinted 1952–1955 by the Consejo Superior de Investigaciones Científicas, Madrid.).Google Scholar
  133. Ramón y Cajal, S., 1929, Studies on Vertebrate Neurogenesis (L. Guth, trans.), Thomas, Springfield, Ill.Google Scholar
  134. Recordon, E., and Griffiths, G. M., 1938, A case of primary bilateral anophthalmia (clinical and histological report), Br. J. Ophthalmol. 22: 353–360.PubMedCrossRefGoogle Scholar
  135. Rockland, K. S., 1985, A reticular pattern of intrinsic connections in primate area V2 (area 18), J. Comp. Neurol. 235: 457–478.CrossRefGoogle Scholar
  136. Rockland, K. S., and Lund, J. S., 1982, Widespread periodic intrinsic connections in the tree shrew visual cortex (area 17), Science 215: 1532–1534.PubMedCrossRefGoogle Scholar
  137. Rockland, K. S., and Lund, J. S., 1983, Intrinsic laminar lattice connections in primate visual cortex, J. Comp. Neurol. 216: 303–318.PubMedCrossRefGoogle Scholar
  138. Ryugo, D. K., Ryugo, R., Globus, A., and Killackey, H. P., 1975, Increased spine density in auditory cortex following visual or somatic deafferentation, Brain Res. 90: 143–146.PubMedCrossRefGoogle Scholar
  139. Sauer, B., Kammradt, G., Krathhausen, I., Kretschmann, H. J., Lange, H. W., and Wingert, W., 1983, Qualitative and quantitative development of the visual cortex in man, J. Comp. Neurol. 214: 441–450.CrossRefGoogle Scholar
  140. Shimada, M., and Langman, J., 1970, Cell proliferation, migration and differentiation in the cerebral cortex of the golden hamster, J. Comp. Neurol. 139: 227–244.PubMedCrossRefGoogle Scholar
  141. Smith, C. G., and Richardson, W. F. G., 1966, The course and distribution of the arteries supplying the visual (striate) cortex, Am. J. Ophthalmol. 612: 1391–1396.Google Scholar
  142. Smith, G. E., 1904, The morphology of the occipital region of the cerebral hemisphere in man and the apes, Anat. Anz. 24: 436–451.Google Scholar
  143. Smith, G. E., 1907a, New studies on the folding of the visual cortex and the significance of the occipital sulci in the human brain, J. Anat. 41: 198–207.Google Scholar
  144. Smith, G. E., 1907b, A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci, J. Anat. Physiol. London 41: 237–254.Google Scholar
  145. Stensaas, S. S., Eddington, D. K., and Dobelle, W. H., 1974, The topography and variability of the primary visual cortex in man, J. Neurosurg. 40: 747–755.PubMedCrossRefGoogle Scholar
  146. Teuber, H. L., Battersby, W. S., and Bender, M. B., 1960, Visual Defects after Penetrating Missile Wounds of the Brain, Harvard University Press, Cambridge, Mass.Google Scholar
  147. Tikoo, R. K., and Kuljis, R. O., 1991, Selective distribution of Alzheimer’s disease lesions in the visual cortex, Soc. Neurosci. Abstr. 17: 351 (147.1).Google Scholar
  148. Tomlinson, B. E., Blessed, G., and Roth, M., 1970, Observations on the brains of demented old people, J. Neurol. Sci. 11: 205–242.PubMedCrossRefGoogle Scholar
  149. Valverde, F., 1971, Short axon neuronal subsystems in the visual cortex of the monkey, Int. J. Neurosci. 1: 181–197.PubMedCrossRefGoogle Scholar
  150. Veraart, C., and Wanet, M.-C., 1986, Sensory substitution of vision by audition, in: Electronic Spatial Sensing for the Blind (D. H. Warren and E. R. Strelow, eds.), Nijhoff, The Hague, pp. 217–238.Google Scholar
  151. Veraart, C., De Voider, A. G., Wanet-Defalque, M. C., Bol, A., Michel, C., and Goffinet, A. M., 1990, Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset, Brain Res. 510: 115–121.PubMedCrossRefGoogle Scholar
  152. Verhoeff, F. H., 1943, A new answer to the question of macular sparing, Arch. Ophthalmol. 30: 421–425.CrossRefGoogle Scholar
  153. Vicqd’Azyr, F., 1786, Traité d’Anatomie et de Physiologie Avec des Planches Coloriées. Représentant au Naturel les Divers Organes de l’Homme et des Animaux, Didot l’Aîné, Paris.Google Scholar
  154. Vignal, W., 1888, Recherches sur le développement des éléments des couches corticales du cerveau et du cervelet chez l’homme et les mammifères, Arch. Physiol. Norm. Pathol. (Paris) Sec. IV 2: 228–254.Google Scholar
  155. Vogt, O., and Vogt, C., 1919, Allgemeinere Ergebnisse unserer Hirnforschung, J. Psychol. Neurol. 25: 279–462.Google Scholar
  156. von Monakow, C., 1889, Experimentalle und pathologisch-anatomische Untersuchungen uber die optischen Zentren und bahnen, Arch Psychiatr. Nervenkr. 20: 714–787.CrossRefGoogle Scholar
  157. Wanet-Defalque, M. C., Veraart, C., De Voider, A., Metz, R., Michel, C., Dooms, G., and Goffinet, A., 1988, High metabolic activity in the visual cortex of early blind human subjects, Brain Res. 446: 369–373.PubMedCrossRefGoogle Scholar
  158. Woods, S. W., Hegeman, I. M., Zubal, I. G., Krystal, J. H., Koster, K., Smith, E. O., Heninger, G. R., and Hoffer, P. B., 1991, Visual stimulation increases technetium-99m-HMPAO distribution in human visual cortex, J. Nucl. Med. 32: 210–215.PubMedGoogle Scholar
  159. Zeki, S., Watson, J. D. G., Leuck, C. J., Friston, K.J., Kennard, C., and Frackowiack, R. S. J., 1991, A direct demonstration of functional specialization in human visual cortex, J. Neurosci. 11: 641–649.Google Scholar
  160. Zheng, D. R., Guan, Y. L., Luo, Z. B., and Yew, D. T., 1989, Scanning electron microscopy of the development of layer I of the human visual cortex, Dev. Neurosci. 11: 1–10.PubMedCrossRefGoogle Scholar
  161. Zilles, K., Werners, R., Büsching, U., and Schleicher, A., 1986, Ontogenesis of the laminar structure in areas 17 and 18 of the human visual cortex, Anat. Embryol. 174: 339–353.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Rodrigo O. Kuljis
    • 1
  1. 1.Department of NeurologyThe University of IowaIowa CityUSA

Personalised recommendations