Advertisement

Temporal Codes for Colors, Patterns, and Memories

  • John W. McClurkin
  • Jennifer A. Zarbock
  • Lance M. Optican
Part of the Cerebral Cortex book series (CECO, volume 10)

Abstract

We can see and understand complicated visual images without conscious effort. Other physical abilities, such as balancing, walking, and talking, are also effortless. One major difference between sensory and motor activity is that we can decompose our movements into a series of very small motions. This conscious decomposition allows our introspection to help us understand how we move. Unfortunately, we cannot decompose our visual perceptions into serial elements of seeing. Thus, introspection cannot help us understand how we see. The present work attempts to help us understand how the brain sees by decomposing vision into elements below our conscious perception: the activity of individual neurons.

Keywords

Neuronal Response Striate Cortex Spike Count Temporal Code Walsh Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, N., and Rao, K. R., 1975, Orthogonal Transforms for Digital Signal Processing, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  2. Barlow, H. B., 1972, Single units and sensation: A neuron doctrine for perceptual psychology, Perception 1: 371–394.PubMedCrossRefGoogle Scholar
  3. Barlow, H. B., 1985, The twelfth Bartlett memorial lecture: The role of single neurons in the psychology of perception, Q. J. Exp. Psychol. 37A: 121–145.Google Scholar
  4. Cattaneo, A., Maffei, L., and Morrone, C., 1981, Patterns in the discharge of simple and complex visual cortical cells, Proc. R. Soc. London B Ser. 212: 279–297.CrossRefGoogle Scholar
  5. Chee-Orts, M.-N., and Optican, L. M., 1993, Cluster method for analysis of transmitted information in multivariate neuronal data, Biol. Cybern. 69: 29–35.PubMedCrossRefGoogle Scholar
  6. Douglas, K. L., and Rockland, K. S., 1992, Extensive visual feedback connections from ventral inferotemporal cortex, Soc. Neurosci. Abstr. 18: 390.Google Scholar
  7. Dow, B. M., and Gouras, P., 1973, Color and spatial specificity of single units in the rhesus monkey foveal striate cortex, J. Neurophysiol. 36: 79–100.PubMedGoogle Scholar
  8. Eckhorn, R., and Pöpel, B., 1975, Rigorous and extended application of information theory to the afferent visual system of the cat. II. Experimental results, Kybernetik 17: 7–17.Google Scholar
  9. Eskandar, E. N., Optican, L. M., and Richmond, B. J., 1992a, Role of inferior temporal neurons in visual memory. II. Multiplying temporal waveforms related to vision and memory, J. Neurophysiol. 68: 1296–1306.PubMedGoogle Scholar
  10. Eskandar, E. N., Richmond, B. J., and Optican, L. M., 1992b, Role of inferior temporal neurons in visual memory. I. Temporal encoding of information about visual images, recalled images, and behavioral context, J. Neurophysiol. 68: 1277–1295.PubMedGoogle Scholar
  11. Gawne, T. J., McClurkin, J. W., Richmond, B. J., and Optican, L. M., 1991a, Lateral geniculate neurons in behaving primates: III. Response predictions of a channel model with multiple spatial-to-temporal filters, J. Neurophysiol. 66: 809–823.PubMedGoogle Scholar
  12. Gawne, T. J., Richmond, B. J., and Optican, L. M., 1991b, Interactive effects among several stimulus parameters on the responses of striate cortical complex cells, J. Neurophysiol. 66: 379–389.PubMedGoogle Scholar
  13. Lennie, P., Krauskopf, J., and Sclar, G., 1990, Ghromatic mechanisms in striate cortex of macaque, J. Neurosci. 10: 649–669.PubMedGoogle Scholar
  14. Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  15. McClurkin, J. W., Optican, L. M., Richmond, B. J., and Gawne, T. J., 1991, Concurrent processing and complexity of temporally encoded neuronal messages in visual perception, Science 253: 675–677.PubMedCrossRefGoogle Scholar
  16. Michael, C. R., 1978a, Color vision mechanisms in monkey striate cortex: Simple cells with dual opponent-color receptive fields, J. Neurophysiol. 41: 1233–1249.PubMedGoogle Scholar
  17. Michael, C. R., 1978b, Color-sensitive complex cells in monkey striate cortex, J. Neurophysiol. 41: 1250–1266.PubMedGoogle Scholar
  18. Michael, C. R., 1981, Columnar organization of color cells in monkey’s striate cortex, J. Neurosci. 46: 587–604.Google Scholar
  19. Moran, J., and Desimone, R., 1985, Selective attention gates visual processing in extrastriate cortex, Science 229: 782–784.PubMedCrossRefGoogle Scholar
  20. Nakayama, K., 1990, The iconic bottleneck and the tenuous link between early visual processing and perception, in: Vision: Coding and Efficiency (C. Blakemore, ed.), Cambridge University Press, London, pp. 411–422.Google Scholar
  21. Optican, L. M., and Richmond, B. J., 1987, Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis, J. Neurophysiol. 57: 162–178.PubMedGoogle Scholar
  22. Optican, L. M., Gawne, T. J., Richmond, B. J., and Joseph, P. J., 1991, Unbiased measures of transmitted information and channel capacity from multivariate neuronal data, Biol. Cybern. 65: 305–310.PubMedCrossRefGoogle Scholar
  23. Richmond, B. J., and Optican, L. M., 1987, Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex: II. Quantification of response waveform, J. Neurophysiol. 57: 147–161.PubMedGoogle Scholar
  24. Richmond, B. J., and Optican, L. M., 1990, Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. II. Information transmission, J. Neurophysiol. 64: 370–380.PubMedGoogle Scholar
  25. Richmond, B. J., Optican, L. M., Podell, M., and Spitzer, H., 1987, Temporal encoding of twodimensional patterns by single units in primate inferior temporal cortex: I. Response characteristics, J. Neurophysiol. 57: 132–146.PubMedGoogle Scholar
  26. Richmond, B. J., Optican, L. M., and Gawne, T. J., 1989, Neurons use multiple messages encoded in temporally modulated spike trains to represent pictures, in: Seeing Contour and Colour (J. J. Kulikowski and C. M. Dickinson, eds.), Pergamon Press, Elmsford, N.Y., pp. 701–710.Google Scholar
  27. Richmond, B. J., Optican, L. M., and Spitzer, H., 1990, Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations, J. Neurophysiol. 64: 351–369.PubMedGoogle Scholar
  28. Tootell, R. B. H., Hamilton, S. L., and Switkes, E. 1988a, Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams, J. Neurosci. 8: 1594–1609.PubMedGoogle Scholar
  29. Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., De Valois, R. L., and Switkes, E., 1988b, Functional anatomy of macaque striate cortex. III. Color, J. Neurosci. 8: 1569–1593.PubMedGoogle Scholar
  30. Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., Switkes, E., and De Valois, R. L., 1988c, Functional anatomy of macaque striate cortex. V. Spatial frequency, J. Neurosci. 8: 1610–1624.PubMedGoogle Scholar
  31. Ts’o, D. Y., and Gilbert, C. D., 1988, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosci. 8: 1712–1727.Google Scholar
  32. Wurtz, R. H., 1969, Response of striate cortex neurons during rapid eye movements in the monkey, J. Neurophysiol. 32: 975–986.PubMedGoogle Scholar
  33. Zarbock, J. A., 1992, Temporally encoded messages about visual features are invariant across primate cortices V1, V2, V3, V4, M.Sc. thesis, Johns Hopkins University, Baltimore.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • John W. McClurkin
    • 1
  • Jennifer A. Zarbock
    • 1
  • Lance M. Optican
    • 1
  1. 1.Laboratory of Sensorimotor ResearchNational Eye Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations