Skip to main content

Motion Processing in Monkey Striate Cortex

  • Chapter
Book cover Primary Visual Cortex in Primates

Part of the book series: Cerebral Cortex ((CECO,volume 10))

Abstract

Motion processing, i.e., the processing of retinal image movement, is of great importance for primates (for review, see, e.g., Nakayama, 1985). In fact, motion processing could be considered fundamental to vision since retinal images are always moving as a result of micro eye movements, essential for visual perception. However, retinal image motion, whether generated by micro or macro eye movements, including pursuit and saccades, contains no information about the outside world. This is not the case for retinal image motion generated by the subject’s own movements. The spatiotemporal changes in the retinal light distribution induced by relative movement between the observer and the environment, generated either by object motion or by self motion, are referred to as optic flow. Optic flow is a rich source of information about the outside world. It provides information about the 3-D trajectory of moving objects of the moving subject as well as about the 3-D structure of the environment. Furthermore, motion is a clear signal for image segmentation and perceptual grouping. In addition to its many perceptual uses, retinal motion also contributes to the control of eye movements, saccades as well as pursuit and optokinetic nystagmus. The term motion processing generally refers to the analysis of retinal image motion inasmuch as this leads to control of eye position and to extraction of information about the outside world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright, T. D., 1984, Direction and orientation selectivity of neurons in visual area MT of the macaque, J. Neurophysiol. 52: 1106–1130.

    PubMed  CAS  Google Scholar 

  • Albright, T. D., 1992, Form-cue invariant motion processing in primate visual cortex, Science 255: 1141–1143.

    Article  PubMed  CAS  Google Scholar 

  • Albus, K., 1980, The detection of movement direction and effects of contrast reversal in the cat’s striate cortex, Vision Res. 20: 289–293.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J., Miezin, F., and McGuinness, E., 1985, Direction-and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT), Perception 14: 105–126.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J., Miezin, F., and McGuinness, E., 1990, Effects of background motion on the responses of neurons in the first and second cortical visual areas, in: Signal and Sense: Local and Global Order in Perceptual Maps (G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley-Liss, New York, pp. 131–141.

    Google Scholar 

  • Baker, J., Petersen, S., Newsome, W., and Allman, J., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral and middle temporal areas, J. Neurophysiol. 45: 397–416.

    PubMed  CAS  Google Scholar 

  • Bender, D. B., and Davidson, R. M., 1986, Global visual processing in the monkey superior colliculus, Brain Res. 381: 372–375.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, F. W., Cleland, B. G., Cooper, G. F., and Enroth-Cugell, C., 1968, The angular selectivity of visual cortical cells to moving gratings, J. Physiol. (London) 198: 237–250.

    CAS  Google Scholar 

  • De Valois, R. L., Yund, E. W., and Hepler, N., 1982, The orientation and direction selectivity of cells in macaque visual cortex, Vision Res. 22: 531–544.

    Article  PubMed  Google Scholar 

  • Dow, B. M., 1974, Functional classes of cells and their laminar distribution in monkey visual cortex, J. Neurophysiol. 37: 927–946.

    PubMed  CAS  Google Scholar 

  • Duysens, J., Orban, G. A., van der Glas, H. W., and de Zegher, F. E., 1982, Functional properties of area 19 as compared to area 17 of the cat, Brain Res. 231: 279–291.

    Article  PubMed  CAS  Google Scholar 

  • Duysens, J., Orban, G. A., Cremieux, J., and Maes, H., 1985, Velocity selectivity in the cat visual system. III. Contribution of temporal factors, J. Neurophysiol. 54: 1068–1083.

    PubMed  CAS  Google Scholar 

  • Duysens, J., Maes, H., and Orban, G. A., 1987, The velocity dependence of direction selectivity of visual cortical neurones in the cat, J. Physiol. (London) 387: 95–113.

    CAS  Google Scholar 

  • Foster, K. H., Gaska, J. P., Nagler, M., and Pollen, D. A., 1985, Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey, J. Physiol. (London) 365: 331–363.

    CAS  Google Scholar 

  • Galletti, C., Squatrito, S., Battaglini, P. P., and Maioli, M. G., 1984, ‘Real-motion’ cells in the primary visual cortex of macaque monkeys, Brain Res. 301: 95–110.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1983, Clustered intrinsic connections in cat visual cortex, J. Neurosci. 3: 1116–1133.

    PubMed  CAS  Google Scholar 

  • Girard, P., Salin, P. A., and Bullier, J., 1991, Visual activity in areas V3a and V3 during reversible inactivation of area VI in the macaque monkey, J. Neurophysiol. 66: 1493–1503.

    PubMed  CAS  Google Scholar 

  • Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area-MT of the macaque monkey during reversible inactivation of area-Vl, J. Neurophysiol. 67: 1437–1446.

    PubMed  CAS  Google Scholar 

  • Gulyás, B., Orban, G. A., and Spileers, W., 1987, A moving noise background modulates responses of striate neurones to moving bars in the cat but not in the monkey, J. Physiol. (London) 390: 28P.

    Google Scholar 

  • Hamilton, D. B., Albrecht, D. G., and Geisler, W. S., 1989, Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function, Vision Res. 29: 1285–1308.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, P., and MacKay, D. M., 1975, Differential responses of cat visual cortical cells to textured stimuli, Exp. Brain Res. 22: 427–430.

    Article  Google Scholar 

  • Hawken, M. J., Parker, A. J., and Lund, J. S., 1988, Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey, J. Neurosci. 8: 3541–3548.

    PubMed  CAS  Google Scholar 

  • Henry, G. H., Bishop, P. O., and Dreher, B., 1974, Orientation, axis and direction as stimulus parameters for striate cells, Vision Res. 14: 767–777.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1959, Receptive fields of single neurones in the cat’s striate cortex, J. Physiol. (London) 148: 574–591.

    CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (London) 195: 215–243.

    CAS  Google Scholar 

  • Jacobs, G. H., and Deegan, J. F., 1992, Cone photopigments in nocturnal and diurnal procyonids, J. Comp. Physiol. 171: 351–358.

    Article  CAS  Google Scholar 

  • Kato, H., Bishop, P. O., and Orban, G. A., 1978, Hypercomplex and the simple/complex cell classification in cat striate cortex, J. Neurophysiol. 41: 1071–1095.

    PubMed  CAS  Google Scholar 

  • Lagae, L., Gulyás, B., Raiguel, S., and Orban, G. A., 1989, Laminar analysis of motion information processing in macaque V5, Brain Res. 496: 361–367.

    Article  PubMed  CAS  Google Scholar 

  • Lagae, L., Raiguel, S., Xiao, D., and Orban, G. A., 1990, Surround properties of MT neurons show laminar organization, Soc. Neurosci. Abstr. 16: 6.

    Google Scholar 

  • Lagae, L., Raiguel, S., and Orban, G. A., 1993, Speed and direction selectivity of macaque middle temporal (MT) neurons, J. Neurophysiol. 69: 19–39.

    PubMed  CAS  Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.

    PubMed  CAS  Google Scholar 

  • Logothetis, N. K., and Charles, E. R., 1990, V4 responses to gratings defined by random dot motion, Invest. Ophthalmol. Visual Sci. 31(4): 90.

    Google Scholar 

  • Loop, M. S., Millican, C. L., and Thomas, S. R., 1987, Photopic spectral sensitivity of the cat, J. Physiol. (London) 382: 537–553.

    CAS  Google Scholar 

  • Lund, J. S., 1973, Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta), J. Comp. Neurol. 147: 455–496.

    Article  PubMed  CAS  Google Scholar 

  • Lund, J. S., 1988, Anatomical organization of macaque monkey striate visual cortex, Annu. Rev. Neurosci. 11: 253–288.

    Article  PubMed  CAS  Google Scholar 

  • Marcar, V. L., and Cowey, A., 1992, The effect of removing superior temporal cortical motion areas in the macaque monkey: II) Motion discrimination using random dot displays, Eur. J. Neurosci. 4: 1228–1238.

    Article  PubMed  Google Scholar 

  • Marcar, V. L., Raiguel, S. E., Xiao, D., Maes, H., and Orban, G. A., 1991, Do cells in area MT code the orientation of a kinetic boundary? Soc. Neurosci. Abstr. 17: 525.

    Google Scholar 

  • Marcar, V. L., Raiguel, S. E., Xiao, D., Maes, H., and Orban, G. A., 1992, Do cells in area V2 respond to the orientation of kinetic boundaries? Soc. Neurosci. Abstr. 18: 1275.

    Google Scholar 

  • Maunsell, J. H. R., and Newsome, W. T, 1987, Visual processing in monkey extrastriate cortex, Annu. Rev. Neurosci. 10: 363–401.

    Article  PubMed  CAS  Google Scholar 

  • Mikami, A., Newsome, W. T, and Wurtz, R. H., 1986, Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and Vl, J. Neurophysiol. 55: 1328–1339.

    PubMed  CAS  Google Scholar 

  • Movshon, J. A., 1975, The velocity tuning of single units in cat striate cortex, J. Physiol. (London) 249: 445–468.

    CAS  Google Scholar 

  • Movshon, J. A., and Newsome, W. T, 1984, Functional characteristics of striate cortical neurons projecting to MT in the macaque, Soc. Neurosci. Abstr. 10: 933.

    Google Scholar 

  • Movshon, J. A., Adelson, E. H., Gizzi, M. S., and Newsome, W. T., 1985, The analysis of moving visual patterns, in: Pattern Recognition Mechanisms (C. Chagas, R. Gattass, and C. Gross, eds.), Pontifical Academy of Sciences, Vatican City, pp. 117–151.

    Google Scholar 

  • Nakayama, K., 1985, Biological image motion processing: A review, Vision Res. 25: 625–660.

    Article  PubMed  CAS  Google Scholar 

  • Newsome, W. T., and Paré, E. B., 1988, A selective impairment of motion perception following lesions of the middle temporal visual area (MT), J. Neurosci. 8: 2201–2211.

    PubMed  CAS  Google Scholar 

  • Olavarria, J. F., DeYoe, E. A., Knierim, J. J., Fox, J. M., and Van Essen, D. C., 1992, Neural responses to visual texture patterns in middle temporal area of the macaque monkey, J. Neurophysiol. 68: 164–181.

    PubMed  CAS  Google Scholar 

  • Orban, G. A., 1985, Velocity tuned cortical cells and human velocity discrimination, in: Brain Mechanisms and Spatial Vision (D. J. Ingle, M. Jeannerod, and D. N. Lee, eds.), Nijhoff, The Hague, pp. 371–388.

    Chapter  Google Scholar 

  • Orban, G. A., 1986, Processing of images in the geniculocortical pathway, in: Visual Neuroscience (J. D. Pettigrew, K. J. Sanderson, and W. R. Levick, eds.), Cambridge University Press, London, pp. 121–141.

    Google Scholar 

  • Orban, G. A., 1991, Quantitative electrophysiology of visual cortical neurones, in: Vision and Visual Dysfunction, Volume 4 (J. Cronly-Dillon, gen. ed., and A. G. Leventhal, ed.), Macmillan & Co., London, pp. 173–222.

    Google Scholar 

  • Orban, G. A., 1992, The analysis of motion signals and the nature of processing in the primate visual system, in: Artificial and Biological Vision Systems (G. A. Orban and H. H. Nagel, eds.), Springer-Verlag, Berlin, pp. 24–56.

    Chapter  Google Scholar 

  • Orban, G. A., Callens, M., and Colle, J., 1975, Unit responses to moving stimuli in area 18 of the cat, Brain Res. 90: 205–219.

    Article  PubMed  CAS  Google Scholar 

  • Orban, G. A., Kennedy, H., and Maes, H., 1981a, Response to movement of neurons in areas 17 and 18 of the cat: Velocity sensitivity, J. Neurophysiol. 45: 1043–1058.

    PubMed  CAS  Google Scholar 

  • Orban, G. A., Kennedy, H., and Maes, H., 1981b, Response to movement of neurons in areas 17 and 18 of the cat: Direction selectivity, J. Neurophysiol. 45: 1059–1073.

    PubMed  CAS  Google Scholar 

  • Orban, G. A., Hoffmann, K.-P., and Duysens, J., 1985, Velocity selectivity in the cat visual system. I. Responses of LGN cells to moving bar stimuli: A comparison with cortical areas 17 and 18, J. Neurophysiol. 54: 1026–1049.

    PubMed  CAS  Google Scholar 

  • Orban, G. A., Kennedy, H., and Bullier, J., 1986, Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: Influence of eccentricity, J. Neurophysiol. 56: 462–480.

    PubMed  CAS  Google Scholar 

  • Orban, G. A., Gulyás, B., and Vogels, R., 1987, Influence of a moving textured background on direction selectivity of cat striate neurons, J. Neurophysiol. 57: 1792–1812.

    PubMed  CAS  Google Scholar 

  • Orban, G. A., Lagae, L., Raiguel, S., Gulyás, B., and Maes, H., 1989, Analysis of complex motion signals in the brain of cats and monkey, in: Models of Brain Function (R. M. J. Cotterill, ed.), Cambridge University Press, London, pp. 151–165.

    Google Scholar 

  • Poggio, G. F., Doty, R. W., Jr., and Talbot, W. H., 1977, Foveal striate cortex of behaving monkey: Single-neuron responses to square-wave gratings during fixation of gaze, J. Neurophysiol. 40: 1369–1391.

    PubMed  CAS  Google Scholar 

  • Raiguel, S. E., Lagae, L., and Orban, G. A., 1989, Response latencies of visual cells in macaque areas V1, V2 and V5, Brain Res. 493: 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Reid, R. C., Soodak, R. E., and Shapley, R. M., 1987, Linear mechanisms of directional selectivity in simple cells of cat striate cortex, Proc. Natl. Acad. Sci. USA 84: 8740–8744.

    Article  PubMed  CAS  Google Scholar 

  • Rockland, K. S., and Lund, J. S., 1983, Intrinsic laminar lattice connections in primate visual cortex. J. Comp. Neurol. 216: 303–318.

    Article  PubMed  CAS  Google Scholar 

  • Rodman, H. R., and Albright, T. D., 1987, Coding of visual stimulus velocity in area MT of the macaque, Vision Res. 27: 2035–2048.

    Article  PubMed  CAS  Google Scholar 

  • Rodman, H. R., Gross, C. G., and Albright, T. D., 1989, Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal, J. Neurosci. 9: 2033–2050.

    PubMed  CAS  Google Scholar 

  • Schiller, P. H., Finlay, B. L., and Volman, S. F., 1976a, Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields, J. Neurophysiol. 39: 1288–1319.

    PubMed  CAS  Google Scholar 

  • Schiller, P. H., Finlay, B. L., and Volman, S. F., 1976b, Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance, J. Neurophysiol. 39: 1320–1333.

    PubMed  CAS  Google Scholar 

  • Skavenski, A. A., Robinson, D. A., Steinman, R. M., and Timberlake, G. T., 1975, Miniature eye movements of fixation in rhesus monkey, Vision Res. 15: 1269–1273.

    Article  PubMed  CAS  Google Scholar 

  • Snowden, R. J., Treue, S., Erickson, R. G., and Andersen, R. A., 1991, The response of area MT and VI neurons to transparent motion, J. Neurosci. 11: 2768–2785.

    PubMed  CAS  Google Scholar 

  • Snowden, R. J., Treue, S., and Andersen, R. A., 1992, The response of neurons in areas VI and MT of the alert rhesus monkey to moving random dot patterns, Exp. Brain Res. 88: 389–400.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Hikosaka, H., Saito, H., Yukie, Y., Fukada, Y, and Iwai, E., 1986, Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey, J. Neurosci. 6: 134–144.

    PubMed  CAS  Google Scholar 

  • Ts’o, D. Y, and Gilbert, C. D., 1988, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosci. 8: 1712–1727.

    CAS  Google Scholar 

  • Vandenbussche, E., Saunders, R. C., and Orban, G. A., 1991, Lesions of MT impair speed discrimination performance in the Japanese monkeys (Macaca fuscata), Soc. Neurosci. Abstr. 17: 8.

    Google Scholar 

  • Van Essen, D. C., 1985, Functional organization of primate visual cortex, in: Cerebral Cortex (A. A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 259–329.

    Google Scholar 

  • Van Essen, D. C., Anderson, C. H., and Felleman, D. J., 1992, Information processing in the primate visual system: An integrated systems perspective, Science 255: 419–423.

    Article  PubMed  Google Scholar 

  • Vogels, R., and Orban, G. A., 1990, How well do response changes of striate neurons signal differences in orientation: A study in the discriminating monkey, J. Neurosci. 10: 3543–3558.

    PubMed  CAS  Google Scholar 

  • Vogels, R., Spileers, W., and Orban, G. A., 1989, The response variability of striate cortical neurons in the behaving monkey, Exp. Brain Res. 77: 432–436.

    Article  PubMed  CAS  Google Scholar 

  • Vogels, R., Sáry, G., and Orban, G. A., 1992, Responses of inferotemporal units to luminance, kinetic and texture boundaries, Invest. Ophthalmol. Visual Sci. 33(4): 1131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Orban, G.A. (1994). Motion Processing in Monkey Striate Cortex. In: Peters, A., Rockland, K.S. (eds) Primary Visual Cortex in Primates. Cerebral Cortex, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9628-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9628-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9630-8

  • Online ISBN: 978-1-4757-9628-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics