The Organization of the Primary Visual Cortex in the Macaque

  • Alan Peters
Part of the Cerebral Cortex book series (CECO, volume 10)


The two species of macaque most commonly used in studies of the visual cortex are Macaca mulatta (rhesus monkey) and M. fascicularis (crab-eating or long-tailed macaque). The brains of these two species are very similar in appearance, although the brain of M. mulatta is generally somewhat larger than that of M. fascicularis.


Visual Cortex Pyramidal Cell Primary Visual Cortex Apical Dendrite Striate Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernhardt, R., and Matus, A., 1984, Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain. A difference between dendritic and axonal cytoskeletons, J. Comp. Neurol. 226: 207–222.CrossRefGoogle Scholar
  2. Billings-Gagliardi, S., Chan-Palay, V., and Palay, S. L., 1974, A review of lamination in area 17 of the visual cortex of Macaca mulatta, J. Neurocytol. 3: 619–629.PubMedCrossRefGoogle Scholar
  3. Blasdel, G. G., 1992, Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex, J. Neurosci. 12: 3115–3138.PubMedGoogle Scholar
  4. Blasdel, G. G., and Lund, J. S., 1983, Termination of afferent axons in macaque striate cortex, J. Neurosci. 3: 1389–1413.PubMedGoogle Scholar
  5. Brodmann, K., 1905, Beitrage zur histologischen Lokalisation der Grosshirnrinde. IIIte Mittelung: Die Rinderfelder der niederen Affen, J. Psychol. Neurol. 4: 177–226.Google Scholar
  6. Brodmann, K., 1909, Vergleichende Lokalisationlehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, J. A. Barth, Leipzig.Google Scholar
  7. Celio, M. R., 1986, Parvalbumin in most gamma-aminobutyric acid containing neurons in the rat cerebral cortex, Science 231: 995–997.PubMedCrossRefGoogle Scholar
  8. Chan-Palay, V., Palay, S. L., and Billings-Gagliardi, S., 1974, Meynert cells in the primate visual cortex, J Neurocytol. 3: 631–658.PubMedCrossRefGoogle Scholar
  9. Clark, W. E. LeGros, 1942, The cells of Meynert in the visual cortex of the monkey, J Anat. 76: 369–376.Google Scholar
  10. Colonnier, M., and Sas, E., 1979, An anterograde degeneration study of the tangential spread of axons in cortical areas 17 and 18 of the squirrel monkey (Saimiri sciureus), J. Comp. Neurol. 179: 245–262.CrossRefGoogle Scholar
  11. Daniel, P. M., and Whitteridge, D., 1961, The representation of the visual field on the cerebral cortex in monkeys, J. Physiol. (London) 159: 203–221.Google Scholar
  12. de Camilli, P., Miller, P. E., Navone, F., Theurkauf, W. E., and Vallee, R. B., 1984, Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence, Neuroscience 11: 819–846.CrossRefGoogle Scholar
  13. De Felipe, J., Hendry, S. H. C., Hashikawa, T., Molinari, M., and Jones, E. G., 1990, A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons, Neuroscience 37: 655–673.CrossRefGoogle Scholar
  14. de Monasterio, F. M., 1978, Properties of concentrically-organized X and Y ganglion cells of the retina of macaques, J Neurophysiol. 41: 1394–1417.PubMedGoogle Scholar
  15. de Monasterio, F. M. 1979 Asymmetry of on and off-pathways of blue-sensitive cones of the retina of macaques, Brain Res. 19: 441–449.Google Scholar
  16. de Monasterio, F. M., and Gouras, P., 1975, Functional properties of ganglion cells of the rhesus monkey retina, J Physiol. (London) 251: 167–196.Google Scholar
  17. Diamond, I. T., Conley, M., Itoh, K., and Fitzpatrick, D., 1985, Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus, J. Comp. Neurol. 242: 584–610.PubMedCrossRefGoogle Scholar
  18. Feldman, M. L., and Peters, A., 1974, A study of barrels and pyramidal dendritic clusters in the cerebral cortex, Brain Res. 77: 55–76.PubMedCrossRefGoogle Scholar
  19. Fitzpatrick, D., Itoh, K., and Diamond, I. T, 1983, The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus), J. Neurosci. 3: 673–702.PubMedGoogle Scholar
  20. Fitzpatrick, D., Lund, J. S., and Blasdel, G. G., 1985, Intrinsic connections of macaque striate cortex. Afferent and efferent connections of lamina 4C, J. Neurosci. 5: 3329–3349.PubMedGoogle Scholar
  21. Fitzpatrick, D., Lund, J. S., Schmechel, D. E., and Towles, A. C., 1987, Distribution of GABAergic neurons and axon terminals in the macaque striate cortex, J. Comp. Neurol. 264: 73–91.PubMedCrossRefGoogle Scholar
  22. Fleischhauer, K., 1974, On different patterns of dendritic bundling in the cerebral cortex of the cat, Z. Anat. Entwicklungsgesch. 143: 115–126.CrossRefGoogle Scholar
  23. Florence, S. L., and Casagrande, V. A., 1987, Organization of individual efferent axons in layer IV of striate cortex in a primate, J Neurosci. 7: 3850–3868.PubMedGoogle Scholar
  24. Fries, W., 1986, Distribution of Meynert cells in primate striate cortex, Naturwissenschaften 73: 557–558.PubMedCrossRefGoogle Scholar
  25. Fries, W., and Distel, H., 1983, Large layer VI neurons of monkey striate cortex (Meynert cells) project to the superior colliculus, Proc. R. Soc. London Ser B. 219: 53–59.CrossRefGoogle Scholar
  26. Fries, W., Keizer, K., and Kuypers, H. G. J. M., 1985, Large layer VI cells in macaque striate cortex (Meynert cells) project to both superior colliculus and prestriate visual area V5, Exp. Brain Res. 58: 613–616.PubMedCrossRefGoogle Scholar
  27. Hässler, R., 1967, Comparative anatomy of central visual systems in day-and night-active primates, in: Evolution of the Fore brain (R. Hässler and H. Stephen, eds.), Plenum Press, New York, pp. 419–434.Google Scholar
  28. Hendrickson, A. E., Hunt, S. P., and Wu, J.-Y, 1981, Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex, Nature 292: 605–607.PubMedCrossRefGoogle Scholar
  29. Hendry, S. H. C., Schwark, H. D., Jones, E. G., and Yan, J., 1987, Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex, J. Neurosci. 1: 1503–1519.Google Scholar
  30. Hendry, S. H. C., Jones, E. G., Emson, P. C., Lawson, D. E. M., Heizmann, C. W., and Streit, P., 1989, Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivity, Exp. Brain Res. 76: 467–472.PubMedCrossRefGoogle Scholar
  31. Hendry, S. H. C., Fuchs, J., De Blas, A. L., and Jones, E. G., 1990, Distribution and plasticity of immunochemically localized GABAA receptors in adult monkey visual cortex, J. Neurosci. 10: 2438–2450.PubMedGoogle Scholar
  32. Hockfield, S., McKay, R. D., Hendry, S. H. C., and Jones, E. G., 1983, A surface antigen that identifies ocular dominance columns in the visual cortex and laminar features of the lateral geniculate nucleus, Cold Spring Harbor Symp. Quant. Biol. 48: 877–889.PubMedCrossRefGoogle Scholar
  33. Horton, J. C., 1984, Cytochrome oxidase patches: A new cytoarchitectural feature of monkey visual cortex, Philos. Trans. R. Soc. London Ser. B. 304: 199–253.CrossRefGoogle Scholar
  34. Horton, J. C., and Hubel, D. H., 1981, Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey, Nature 292: 762–764.PubMedCrossRefGoogle Scholar
  35. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (London) 195: 215–243.Google Scholar
  36. Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey, J. Comp. Neurol. 146: 421–450.PubMedCrossRefGoogle Scholar
  37. Hubel, D. H., and Wiesel, T. N., 1974, Sequence regularity and geometry of orientation columns in the monkey striate cortex, J. Comp. Neurol. 158: 267–294.PubMedCrossRefGoogle Scholar
  38. Hubel, D. H., and Wiesel, T. N., 1977, Functional architecture of macaque monkey visual cortex, Proc. R. Soc. London Ser. B 198: 1–59.CrossRefGoogle Scholar
  39. Hubel, D. H., Wiesel, T. N., and Stryker, M. P., 1978, Anatomical demonstration of orientation columns in macaque monkey, J. Comp. Neurol. 177: 361–380.PubMedCrossRefGoogle Scholar
  40. Kosik, K. C., Duffy, L. K., Dowling, M. M., Abraham, C., McClusky, A., and Selkoe, D. J., 1984, Monoclonal antibody to microtubule-associated protein 2 (MAP2) labels Alzheimer neurofibrillary tangles, Proc. Natl. Acad. Sci. USA 81: 7941–7945.PubMedCrossRefGoogle Scholar
  41. Lachica, E. A., and Casagrande, V. A., 1992, Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: Axon morphology, J. Comp. Neurol. 319: 141–158.PubMedCrossRefGoogle Scholar
  42. Lennie, P., Kranskopf, J., and Sclar, G., 1990, Chromatic mechanisms in striate cortex of macaque, J. Neurosci. 10: 649–669.PubMedGoogle Scholar
  43. LeVay, S., Hubel, D. H., and Wiesel, T. N., 1975, The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain, J. Comp. Neurol. 159: 559–576.PubMedCrossRefGoogle Scholar
  44. LeVay, S., Connolly, M., Houde, J., and Van Essen, D. C., 1985, The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey, J. Neurosci. 5: 486–501.PubMedGoogle Scholar
  45. Livingstone, M. S., and Hubel, D. H., 1982, Thalamic input to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Natl. Acad. Sci. USA 79: 6098–6101.PubMedCrossRefGoogle Scholar
  46. Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  47. Lund, J. S., 1973, Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatto), J. Comp. Neurol. 147: 455–496.PubMedCrossRefGoogle Scholar
  48. Lund, J. S., 1984, Spiny stellate cells, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 255–308.Google Scholar
  49. Lund, J. S., and Boothe, R. G., 1975, Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the macaque monkey, J. Comp. Neurol. 159: 305–334.CrossRefGoogle Scholar
  50. McKay, R., and Hockfield, S., 1982, Monoclonal antibodies distinguish antigenetically discrete neuronal types in the vertebrate CNS, Proc. Natl Acad. Sci. USA 79: 6747–6751.PubMedCrossRefGoogle Scholar
  51. Meynert, J., 1872, in: Sticker’s Handbuch der Gewebelehre, Volume II.Google Scholar
  52. Michael, C. R., 1981, Columnar organization of color cells in monkey’s striate cortex, J. Neurophysiol. 46: 587–604.PubMedGoogle Scholar
  53. Michael, C. R., 1985, Serial processing of color in the monkey’s striate cortex, in: Models of the Visual Cortex (D. Rose and V. G. Dobson, eds.), Wiley, New York, pp. 301–309.Google Scholar
  54. Michael, C. R., 1988, Retinal afferent arborization patterns, dendritic field orientations, and the segregation of function in the lateral geniculate nucleus of the monkey, Proc. Natl. Acad. Sci. USA 85: 4914–4918.PubMedCrossRefGoogle Scholar
  55. O’Kusky, J., and Colonnier, M., 1982, A laminar analysis of the number of neurons, glia and synapses in the visual cortex (area 17) of adult macaque monkeys, J. Comp. Neurol. 210: 278–290.PubMedCrossRefGoogle Scholar
  56. Payne, B. R., and Peters, A., 1989, Cytochrome oxidase patches and Meynert cells in monkey visual cortex, Neuroscience 28: 353–363.PubMedCrossRefGoogle Scholar
  57. Perry, V. H., and Cowey, A., 1984, Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey, Neuroscience 12: 1125–1127.PubMedCrossRefGoogle Scholar
  58. Peters, A., 1987, Number of neurons and synapses in primary visual cortex, in: Cerebral Cortex, Volume 6 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 267–294.CrossRefGoogle Scholar
  59. Peters, A., and Jones, E. G., 1984, Classification of cortical neurons, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 107–122.Google Scholar
  60. Peters, A., and Sethares, C., 1991a, Organization of pyramidal neurons in area 17 of monkey visual cortex, J. Comp. Neurol. 306: 1–23.PubMedCrossRefGoogle Scholar
  61. Peters, A., and Sethares, C., 1991b, Layer VA of rhesus monkey primary visual cortex, Cereb. Cortex 1: 445–462.PubMedCrossRefGoogle Scholar
  62. Peters, A., and Sethares, C., 1993, Aging and the Meynert cells in rhesus monkey primary visual cortex, Anat. Rec. 236: 721–729.PubMedCrossRefGoogle Scholar
  63. Peters, A., and Walsh, M. T., 1972, A study of the organization of apical dendrites in the somatic sensory cortex of the rat, J. Comp. Neurol. 144: 253–268.PubMedCrossRefGoogle Scholar
  64. Polyak, S., 1957, The Vertebrate Visual System, University of Chicago Press, Chicago.Google Scholar
  65. Rakic, P., Bourgeois, J.-P., Eckenhoff, M. F., Zecevic, N., and Goldman-Rakic, P. S., 1986, Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science 232: 232–235.PubMedCrossRefGoogle Scholar
  66. Ramon y Cajal, S., 1899, Estudios sobre la corteza cerebral humana I: Corteza visual, Rev. Trim. Micrograf. 4: 1–63.Google Scholar
  67. Saint-Marie, R. L., and Peters, A., 1985, The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): A Golgi-electron microscopic study, J. Comp. Neurol. 233: 213–235.PubMedCrossRefGoogle Scholar
  68. Schein, S. J., and de Monasterio, F. M., 1987, Mapping of retinal and geniculate neurons onto striate cortex of macaque, J. Neurosci. 1: 996–1009.Google Scholar
  69. Schmolke, C., 1989, The ontogeny of dendritic bundles in rabbit visual cortex, Anat. Embryol. 180: 371–381.PubMedCrossRefGoogle Scholar
  70. Shipp, S., and Zeki, S., 1989, The organization of connections between areas V5 and V1 in macaque monkey visual cortex, Eur. J. Neurosci. 1: 309–332.PubMedCrossRefGoogle Scholar
  71. Tigges, M., Tigges, J., and Sporborg, C. D., 1981, Will the real Meynert cell please stand up? Soc. Neurosci. Abstr. 7: 831.Google Scholar
  72. Tootell, R. B. H., Silverman, M. S., Switkes, E., and De Valois, R. L., 1982, Deoxyglucose analysis of retinotopic organization in primary striate cortex, Science 218: 902–904.PubMedCrossRefGoogle Scholar
  73. Tootell, R. B. H., Hamilton, S. L., Silverman, M. S., and Switkes, E., 1988a, Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions, J. Neurosci. 8: 1500–1530.PubMedGoogle Scholar
  74. Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., De Valois, R. L., and Switkes, E., 1988b, Functional anatomy of macaque striate cortex. III. Color, J. Neurosci. 8: 1569–1593.PubMedGoogle Scholar
  75. Ts’o, D. Y., and Gilbert, C. D., 1988, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosci. 8: 1712–1727.Google Scholar
  76. Valverde, F., 1985, The organizing principles of the primary visual cortex in the monkey, in: Cerebral Cortex, Volume 3 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 207–257.Google Scholar
  77. Van Brederode, J. F. M., Mulligan, K. A., and Hendrickson, A. E., 1990, Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex, J. Comp. Neurol. 298: 1–22.PubMedCrossRefGoogle Scholar
  78. Van Essen, D. C., Newsome, W. T., and Maunsell, J. H. R., 1984, The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies and individual variability, Vision Res. 24: 429–448.PubMedCrossRefGoogle Scholar
  79. Vautin, R. G., and Dow, B. M., 1985, Color cell groups in foveal striate cortex of the behaving macaque, J. Neurophysiol. 54: 273–292.PubMedGoogle Scholar
  80. Vincent, S. L., Peters, A., and Tigges, J., 1989, Effects of aging on the neurons within area 17 of rhesus monkey cerebral cortex, Anat. Rec. 223: 329–341.PubMedCrossRefGoogle Scholar
  81. von Bonin, G., 1942, The striate area of primates, J. Comp. Neurol. 77: 405–429.CrossRefGoogle Scholar
  82. von Bonin, G., and Bailey, P., 1947, The Neocortex of Macaca Mulatta, University of Illinois Press, Urbana.Google Scholar
  83. Werner, L., Winkelmann, E., Koglin, A., Neser, J., and Rodewohl, H., 1989, A Golgi deimpregnation study of neurons in the rhesus monkey visual cortex (areas 17 and 18), Anat. Embryol. 180: 583–597.PubMedCrossRefGoogle Scholar
  84. Wiesel, T. N., Hubel, D. H., and Lam, D. U. K., 1974, Autoradiographic demonstration of outer dominance columns in monkey striate cortex by means of transneuronal transport. Brain Res. 74: 273–279.CrossRefGoogle Scholar
  85. Williams, R. W, and Rakic, P., 1988, Elimination of neurons from the rhesus monkey’s lateral geniculate nucleus during development, J. Comp. Neurol. 272: 424–486.PubMedCrossRefGoogle Scholar
  86. Winfield, D. A., Rivera-Dominguez, M., and Powell, T. P. S., 1981, The number and distribution of Meynert cells in area 17 of the macaque monkey, Proc. R. Soc. London Ser. B 213: 27–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Alan Peters
    • 1
  1. 1.Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUSA

Personalised recommendations